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Abstract

An abstract argumentation framework is a formalism that uses a directed graph
of interacting arguments to represent knowledge, thus modelling an exchange of
opposing viewpoints. Semantics determine the sets of simultaneously acceptable
arguments, the so-called extension-sets. We analyse representatives of the class
of non-admissible semantics, particularly the undisputed, strongly undisputed,
weakly admissible, and weakly preferred semantics, and determine properties of
the extension-sets they produce, as well as structural features of frameworks that
realise extension-sets under these semantics. We describe a class of extension-sets
for which we show that it is not realisable under undisputed semantics. We also
identify concepts that have proven to be useful in the construction of frameworks
that aim to realise given extension-sets under classical semantics and transfer them
to the non-admissible case.
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1 Introduction

Abstract argumentation frameworks [Dun95] model scenarios in which arguments
are exchanged in the course of a dispute. Only the interdependencies between the
arguments are considered; the arguments themselves are not assessed, neither in
terms of their truthfulness nor their applicability to the topic of the debate. The
subject of the modelling is merely the arguments as abstract entities, but without
internal structure, which attempt to invalidate each other through mutual attacks.
Accordingly, an abstract argumentation can be represented as a directed graph that
contains the arguments as nodes and in which an edge represents an attack from
one argument to another with the aim of invalidating the attacked argument.

In this scenario, the question now arises as to which sets of arguments can be
considered valid in the sense that they represent a justifiable point of view. Firstly,
it seems imperative that a valid set of arguments is conflict-free, i.e., that it does not
contain any arguments that attack other arguments in the set. Taken on its own,
this criterion can be seen as somewhat naive, as it does not consider possible attacks
from arguments that lie outside the selected set. To safeguard against such attacks,
one can further demand that all attacking arguments should themselves be counter-
attacked from the selected set; one can go so far as to demand that the selected set
attacks all arguments that are not part of it. It is not hard to see that, in the latter
case, the existence of a set satisfying these conditions is no longer certain.

Thus, an essential parameter for finding a solution to an abstract argumentation
problem is the specification of the exact conditions according to which the sets of
valid arguments, in the following referred to as the extensions of the framework,
are selected; these conditions are expressed by the semantics of the argumentation
framework, namely in the form of a mapping from argumentation frameworks to
their extensions. The focus of the present work lies on the expressive power of these
mappings, i.e., on the question which sets of extensions the different semantics are
able to generate at all.

1.1 Background and Relation to Previous Work

Abstract argumentation frameworks were introduced in the foundational work of
Dung [Dun95]; the semantics described in there, which are now commonly referred
to as classical semantics, are typically characterised by the fact that their extensions
defend all attacks directed against any of their contained arguments, meaning that
each argument attacking the extension is in turn attacked by another argument
from the extension itself. Conflict-free sets of arguments exhibiting this property
are called admissible.

One of the consequences arising from this concept of admissibility has already
been questioned by Dung himself [Dun95, p.351], using the simple example from
Figure 1: since argument b does not defend itself against the attack by a, the set
{b} is not considered admissible; however, since a already invalidates itself, the
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question is justified whether b should actually need to defend itself at all under
these circumstances.

a b

Figure 1: In this simple framework, b is attacked by a nonsensical attacker a.

The consideration of this example, as well as other similar examples, inspired the
development of so called non-admissible semantics, which aim to weaken the concept
of admissibility to such an extent that attacks by arguments that are in some way not
to be regarded as serious do not have to be fended off by extensions. This new class
of semantics includes the semantics based on the concept of weak admissibility by
Baumann, Brewka and Ulbricht [BBU20, BBU22], as well as the semantics defined
on the basis of undisputed sets by Thimm [Thi23]. Another approach is Dondio’s
also called “weakly admissible” semantics [Don19], which Baumann et al. compare
along with other alternative approaches to their own [BBU22]. While the various
proposed semantics all address the same problem, albeit from different angles, they
may well differ in the sets of extensions they produce in response to a particular
argumentation scenario.

The discovery and development of an increasing number of semantics raises the
need to systematically analyse and compare their properties. To this end, Baroni and
Giacomin [BG07] enumerated various principles and studied the fulfilment of these
principles by the individual semantics; this consideration was extended by van der
Torre and Vesic [vdTV17] to include further principles and semantics. Dvořák and
Woltran [DW11] as well as Dvořák and Spanring [DS17] investigate the question
whether there exist translations between frameworks so that for two semantics, the
set of extensions of the original framework under the first semantics is identical or at
least sufficiently similar to the set of extensions of the translated framework under
the second semantics. Finally, Dunne, Dvořák, Linsbichler, and Woltran [DDLW15]
explore signatures of semantics: they investigate properties that the extension-sets of
various semantics necessarily possess, and show that some of these properties are
also sufficient to guarantee the existence of frameworks capable of realizing such
sets of extensions.

The study of signatures has so far mainly been carried out for semantics which
are based on the notion of admissibility. The present work aims to extend the scope
of consideration to non-admissible semantics, by investigating properties of their
extension-sets and by assessing construction methods for frameworks that attempt
to realise the extension-sets of some of the representatives of this more novel class
of semantics.
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1.2 Contributions

The main idea of this thesis is to identify patterns and approaches found in the
classical methods that determine properties of signatures and construct frameworks
that realise extension-sets, and to investigate to what extent they are transferable
to the non-admissible cases, particularly the weakly admissible, weakly preferred,
undisputed and strongly undisputed semantics. To this end, we proceed as follows:

• We lay the necessary groundwork by recapitulating Dung’s seminal theory
of abstract argumentation and by introducing proponents of the novel class
of non-admissible semantics in Section 2, where we aim to give a concise but
thorough overview of the necessary prerequisites required to understand the
present context as well as related work.

• We investigate the limits within which classical properties of signatures can be
transferred to non-admissible semantics in Section 3. We introduce the class
of disjointly supported extension-sets and show that they are not realisable by
undisputed semantics.

• To characterise the signature of a semantics, one inevitably needs to specify a
construction method that is able to realise all extension-sets in question. Thus
in Section 4, we describe classical construction methods and identify common
ideas and concepts: we observe that, typically, a construction method needs
to separate extensions, make use of a base framework, subsequently apply
filtering, and suppress any auxiliary arguments used in the construction.

• We transfer these ideas to non-admissible semantics starting with Section 5.
We show that there are mechanisms at work that ensure that extensions remain
separated from each other in the extension-set (in the sense that their union is
not part of the extension-set despite no apparent conflicts exist), which differ
from the analogous classical mechanisms, and go on to characterise structural
properties of frameworks that implement these mechanisms. We generalise a
proposition of Baumann et al. concerning the invariance of the order of reduct
formation. We formally introduce the terms base framework and filter, and show
that they play an important role in the classical construction schemes.

• Drawing on several case studies, we develop an intuition for the expressive
power of the combination of base framework and filter in the non-admissible
case in Section 6. There we introduce the cycle hub base framework, which
has the highest expressive power among the constructions that we examine,
and is the most promising generic candidate for the realisation of undisputed
extension-sets. We introduce the class of uniquely indexed extension-sets and
show that they can be realised by the undisputed, strongly undisputed, and
the weakly preferred semantics.

We summarise and conclude our work in Section 7.
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2 Preliminaries

This section explains notations and definitions, and reproduces results from existing
literature insofar as they are relevant to further considerations.

2.1 Abstract Argumentation Frameworks and Classical Semantics

Following the presentation by Dung [Dun95] we start with a basic set A, whose
elements a ∈ A we call arguments.

Definition 1. An argumentation framework is a pair F = (A,R) consisting of a finite
subset A ⊆ A and a relation R ⊆ A×A. We call R the attack relation (on F ); the set
of all argumentation frameworks (over A) is denoted by FA.

We now introduce basic notations. For F = (A,R) and (a, b) ∈ R, we write
a →R b, or shorter a → b if the reference to the relation R is unambiguous, and say
that a attacks b (in F ). A set S ⊆ A attacks an argument a ∈ A (symbolically: S → a)
if any member s ∈ S attacks a. Likewise, an argument a ∈ A is said to attack a
set S ⊆ A if a attacks some s ∈ S; we then write a → S. Extending the notation
in the obvious way to two sets S, T ⊆ A, we write S → T to denote that there are
s ∈ S, t ∈ T such that s→ t. Additionally, given a set S ⊆ A, S+ = {a ∈ A | S → a}
denotes the set of all arguments attacked by S, while S− = {a ∈ A | a → S} is the
set of all attackers of S. Finally, we call S⊕ = S ∪ S+ the range of S.

Definition 2 (Classical Defence). Let (A,R) ∈ FA. A set D ⊆ A defends a set S ⊆ A
if S− ⊆ D+; equivalently, for every attacker a ∈ Awith a→ S, we have D → a.

This concept of defence is fundamental to the following definition of admissibility.

Definition 3 (Conflict-Free and Admissible Sets). Let (A,R) ∈ FA be a framework.
A set S ⊆ A is conflict-free if it does not contain two arguments a, b ∈ S with a → b;
furthermore, S is admissible if it is conflict-free and defends itself against any attacks
from within A.

Next, we introduce mappings from argumentation frameworks to sets of sets of
arguments.

Definition 4 (Semantics and Extensions). A semantics is a mapping σ : FA → 22
A

with F = (A,R) 7→ σ(F ) ⊆ 2A. For a given framework F ∈ FA, we call σ(F ) the set
of σ-extensions of F .

Certain semantics along with their extensions are given special names. The below
(in Definition 5) defined semantics were described by Dung [Dun95]; we will refer
to them as the classical semantics.

Definition 5 (Classical Semantics). Let F = (A,R) ∈ FA. An extension is said to be:

• preferred, if it is a ⊆-maximal admissible subset of A;
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• complete, if it is admissible and includes all arguments that it defends;

• grounded, if it is complete and ⊆-minimal in A;

• stable, if it is conflict-free and attacks all arguments (of A) it does not contain.

These designations also apply to the semantics themselves (e.g., the semantics that
assigns to a framework the set of its stable extensions is called the stable semantics).

In order to standardise the notation, we introduce the following designations for
specific semantics.

Definition 6. Applied to a framework F = (A,R) ∈ FA, we define:

• cf : F 7→ {S ⊆ A | S is conflict-free in F};

• naive : F 7→ {S ⊆ A | S ∈ cf(F ) and S is ⊆-maximal in A};

• adm : F 7→ {S ⊆ A | S is admissible in F};

• pr, com, grd, and stb designate the preferred, complete, grounded, and stable
semantics.

We say that an argument of a framework F is credulously accepted with regard to
a semantics σ if it appears in at least one extension of σ(F ), and that it is sceptically
accepted if it appears in all extensions of σ(F ).

Finally, for a framework F = (A,R) ∈ FA and a subset of arguments S ⊆ A, the
restriction of F to S

F |S = (S,R∩ (S × S))

consists only of the arguments of S and the attacks among them.

2.2 Semantics Based on Weak Admissibility and Weak Defence

Recalling the introductory example from Figure 1, we can generalize the pattern of
a nonsensical or non-serious attack to attacks originating from odd cycles (Figure 2),
as in the following example.

Example 1. Consider the odd cycle S = {a1, . . . , a5} of the rightmost framework in
Figure 2. No subset of S is admissible in that framework, since every conflict-free
subset of S (for example, {a1, a4}) has attackers (continuing the example, {a3, a5})
against whom it does not completely defend (the attack by a3 is undefended). The
same applies analogously to the other frameworks.

The frameworks in Figure 2 model situations where an argument is attacked from
a point of view that itself is unsustainable. Yet, classical semantics demand that b
does defend itself if it is to be accepted as valid. It appears that, in order to remedy
the issue, the classical notion of admissibility needs to be adapted.

The intuition behind the following definition is to remove from consideration all
arguments of a set and those that are attacked by the set itself, since these arguments
cannot pose a threat any more.
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a1 b
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a3

a1 b
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a3

a4

a5

a1 b

Figure 2: Odd cycles of length 1, 3, and 5 attacking an argument b; none of the attacks
on b are considered serious.

Definition 7 (Reduct [BBU22]). Let F = (A,R) ∈ FA and let S ⊆ A. The reduct of F
with respect to S is the framework

FS = F |A\S⊕ ,

that is, the “remainder” of F after removing the arguments of S, and all arguments
attacked by S, along with any attacks they participate in.

Building on the concept of the reduct, we introduce the following modified notion
of admissibility.

Definition 8 (Weak Admissibility [BBU22]). Let F = (A,R) ∈ FA and let S ⊆ A.
The set S is weakly admissible in F (S ∈ wadm(F )) if it is both conflict-free and not
attacked from any weakly admissible set of the reduct FS , so that1

S ∈ cf(F ) and ∀a ∈ A :
(
a→ S =⇒ a /∈

⋃
wadm

(
FS

))
.

Admissible sets defend all of their elements, leaving no attackers in the reduct, so
that the body of Definition 8 holds trivially for admissible sets as well.

Proposition 1 ([BBU22]). Admissibility implies weak admissibility.

Example 2. Returning to the rightmost framework in Figure 2 (call it F ), let us check
for weak admissibility of the attacked set {b}. The reduct F1 = F {b} consists of the
odd cycle S = {a1, . . . , a5} and the attacks among S. Looking at possible attackers
of {b} such as the conflict-free subset S′ = {a1, a4} ⊂ S, we want to assess weak
admissibility of S′ in F1 and find that FS′

1 = ({a3}, ∅), in which {a3} is admissible
indeed and does attack S′ in F1, so that S′ cannot be weakly admissible in F1 itself,
rendering its attack on {b} in F not serious. The cases for other conflict-free subsets
of S are analogous and consequently, {b} is weakly admissible.

The following weak notion of defence is slightly more involved than the classical
one, since it needs to make sure that only serious attacks are defended against, and
that the defenders themselves are sufficiently credible.

1For a set of sets S, we intend
⋃

S to mean
⋃

S∈S S.
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Definition 9 (Weak Defence [BBU22]). Let F = (A,R) ∈ FA be a framework, and
let D,S ⊆ A. D weakly defends S iff any attacker a → S (a ∈ A) is either directly
attacked by D; or (i) the attacker a does neither originate from D, nor from a weakly
admissible set of the reduct FD, and (ii) the defending set D is itself contained in a
weakly admissible set of F .

Based on weak admissibility and defence, we can define counterparts to classical
semantics from Definition 5.

Definition 10 ([BBU22]). Let F = (A,R) ∈ FA. An extension is said to be:

• weakly preferred, if it is a ⊆-maximal weakly admissible subset of A;

• weakly complete, if it is weakly admissible and contains all of its supersets that
it weakly defends;

• weakly grounded, if it is a ⊆-minimal weakly complete subset of A.

We denote the weakly preferred, the weakly complete, and the weakly grounded
semantics with wpr, wcom, and wgrd, in accordance with Definition 6.

In addition to the above, Baumann et al. [BBU22] also investigate weak versions
of stable semantics and find that they either coincide with weakly preferred or with
classical stable semantics, concluding that a weak version of stable semantics is not
obtained in an obvious fashion as was the case with the other weak versions of
classical semantics.

2.3 Undisputed Sets

We have seen in Example 2 how the definition has to be applied recursively in order
to determine the weak admissibility of a given set, suggesting that reasoning under
weakly admissible semantics may be computationally challenging. Indeed, Dvořák,
Ulbricht, and Woltran [DUW22] show that certain standard decision problems, such
as the verification whether a given set is weakly admissible, are PSPACE-complete.2

An alternative approach to address the problems associated with semantics that
build on the concept of admissibility and that even is designed to be more tractable
computationally is presented by Thimm [Thi23]. We start with the following two
preliminary definitions.

Definition 11 (Vacuity [Thi23]). A framework F ∈ FA is vacuous with respect to a
semantics σ if the σ-extensions of F contain at most the empty set, i.e. σ(F ) ⊆ {∅}.

A framework that is vacuous with respect to a given semantics can be considered
nonsensical, since none of its arguments are acceptable under that semantics.

2PSPACE-complete problems are among the computationally most challenging problems, and are at
least as hard as NP-complete problems [Pap03].
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Definition 12 (Vacuous Reduct Semantics [Thi23]). Let F = (A,R) ∈ FA and let σ, τ
be two arbitrary semantics. A set S ⊆ A is a στ -extension if S is a σ-extension, and
the reduct FS is vacuous with respect to τ . A mapping FA → 22

A
is a στ -semantics

if it assigns to a framework the set of its στ -extensions; we denote such a mapping
simply with στ .

We build on the previous definition and define the following concrete semantics.

Definition 13 ([Thi23]). We call

• ud = cfadm the undisputed semantics, and

• sud = cfud the strongly undisputed semantics.

Example 3. We return to Figure 2 once more and want to assess undisputedness of
{b} in the rightmost framework, which we call F . {b} is conflict-free, and we have
seen earlier (in Example 1) that the reduct F {b} contains no admissible sets, so {b} is
undisputed.

It is worth noting that vacuous reduct semantics provide a template for describing
other new as well as existing semantics, as in the following proposition.

Proposition 2 ([Thi23]). pr = admadm.

Corollary 1. An undisputed extension that is admissible is also preferred.

2.4 Other Non-admissible Semantics

The semantics presented so far may harbour further possible inconsistencies, as the
next example shows.

Example 4. Consider the framework in Figure 3 (call it F ), where the arguments
a and b both attack x, but mutually refute each other at the same time. We can
imagine that a and b are incriminating statements that attack a claim of innocence in
the form of x. However, since both statements contradict each other, a semantics that
prioritises a presumption of innocence—for instance, in a legal context—in this case
would have to dismiss both a and b, and accept x. Yet, we have pr(F ) = wpr(F ) =
ud(F ) = sud(F ) = {{a}, {b}}, and com(F ) = adm(F ) = wadm(F ) = {∅, {a}, {b}}.

x

ba

Figure 3: The two attackers of x refute each other. Should x be accepted?
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The above example is due to Dondio [Don19]. He proposes a semantics that is
based on Caminada and Gabbay’s labelling-approach [CG09], which assigns labels
to arguments in the following manner. Note that the term weakly admissible is also
used below, as in Definition 8; both concepts are however unrelated.

Definition 14 ([Don19]). Let F = (A,R) ∈ FA. A weakly admissible labelling of F is a
total function A → {in, out,undecided} so that

• when a is labelled in, then none of its attackers are labelled in;

• when a is labelled out, then at least one of its attackers is labelled in;

• when a is labelled undecided, then no attacker is labelled in, and at least one
attacker is labelled undecided as well.

Arguments labelled in are considered explicitly accepted, arguments labelled out
are explicitly rejected, and no judgement with regard to acceptance is made for the
undecided arguments.

Example 5. With regard to the framework in Figure 3, we obtain the following
weakly admissible labellings: {(a 7→ in, b 7→ out, x 7→ out), (a 7→ out, b 7→ in, x 7→
out), (a 7→ undecided, b 7→ undecided, x 7→ in), (a 7→ undecided, b 7→ undecided, x 7→
undecided)}, so that x is at least credulously accepted.

We mention in passing other semantics that do not make use of the concept of
admissibility and therefore can be considered non-admissible semantics as well, for
instance

• cf-based semantics, such as the previously defined naive semantics, as well as
stage semantics, which maximize (with regard to set inclusion) the range S⊕

of conflict-free sets S, and which are closely related to stable semantics (all
stage extensions are stable extensions as soon as one stable extension exists)
[BCG11];

• and finally Dauphin, Rienstra and van der Torre’s qualified and semi-qualified
semantics [DRVDT20], which are based on labellings (similar to Definition 14)
but allow for decomposition along the strongly connected components (SCC’s)
of a framework (SCC’s are maximal sets of arguments which are mutually
“reachable” through the attack relation) [BGG05].

2.5 Properties of Extension-Sets and Signatures of Semantics

Having introduced the various semantics that are of interest to us, we now turn to
the question whether their extension-sets posses characteristic properties. For some
of the semantics, this question has been answered affirmative. We list the respective
properties below.
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Definition 15 (Downward-Closure [DDLW15]). Let S ⊆ 2A be a collection of sets of
arguments. The downward-closure dcl(S) of S is the set of all subsets of the individual
elements of S, that is, dcl(S) = {S ⊆

⋃
S | ∃S′ ∈ S : S ⊆ S′}.

Definition 16 (Properties of Extension-Sets [DDLW15]). Let S ⊆ 2A. We call S:

• downward-closed, if dcl(S) = S;

• incomparable, if for all S, S′ ∈ S, S ⊆ S′ implies S = S′;

• conflict-sensitive, if for all A,B ∈ S with A ∪ B /∈ S there exist a, b ∈ A ∪ B so
that {a, b} ⊈ S for all S ∈ S; i.e., there are two arguments in A ∪ B that never
occur jointly in any extension of S;

• tight, if for all A ∈ S and b ∈
⋃
S with A ∪ {b} /∈ S there exists a ∈ A so that

{a, b} ⊈ S for all S ∈ S; i.e., there is an argument in A that never occurs jointly
with b in any extension of S.

The following lemma reproduces two properties of tight sets given by Dunne et
al. [DDLW15] that will be useful shortly.

Lemma 1 ([DDLW15]). Tightness implies conflict-sensitivity, and the ⊆-maximal
elements of a tight set form a tight set themselves.

We now turn to the main topic of our consideration, which is the expressive power
of semantics.

Definition 17 (Signature [DDLW15]). Let σ : FA → 22
A

be a semantics. The signature
Σσ of σ is the set Σσ = {σ(F ) | F ∈ FA}.

In other words, the signature Σσ of a semantics σ aggregates all extension-sets
that σ can possibly produce. For some semantics, their signatures turn out to have
exact characterisations; we reproduce some of the respective results of Dunne et al.
[DDLW15] below.

Theorem 1 (Signatures of Semantics [DDLW15]). With respect to a set of arguments
A, the following characterisations for semantics hold:

• Σcf = {S ⊆ 2A | S is non-empty, downward-closed, and tight};

• Σnaive = {S ⊆ 2A | S is non-empty, incomparable, and dcl(S) is tight};

• Σstb = {S ⊆ 2A | S is incomparable and tight};

• Σadm = {S ⊆ 2A | S contains ∅ and is conflict-sensitive};

• Σpr = {S ⊆ 2A | S is non-empty, incomparable, and conflict-sensitive};

• Σgrd = {S ⊆ 2A | |S| = 1}.
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Note that we have not resorted to considering a framework’s structural features
(particularly, the attack relation) in order to characterise these semantics. In fact,
one of the motivations behind this characterisation is to be able to assess whether
it is feasible to represent modified or additional points of view within an existing
argumentation scenario, before attempting to adapt the argumentation framework
itself. Dunne et al. list further motivations and use cases [DDLW15].

Finally, between certain signatures of interest we have the following relations.

Theorem 2 ([DDLW15]). The following relations hold:

• Σcf ⊊ Σadm;

• Σnaive ⊊ Σpr;

• {S ∪ {∅} | S ∈ Σpr} ⊊ Σadm.

Proof. The implications follow from the characterisations of Theorem 1, combined
with Lemma 1. The inequalities Σcf ̸= Σadm and Σnaive ̸= Σpr are evidenced by
S1 = {{a, b, c}, {c, d}, {b, d, e}}, which is incomparable and conflict-sensitive, but
neither S1 or dcl(S1) are tight;3 finally, S2 = {{a}, {a, b}} is conflict-sensitive but not
incomparable, so S2 ∪ {∅} ∈ Σadm, but S2 /∈ Σpr.

3An even smaller example of a conflict-sensitive but not tight extension-set is {∅, {a, b}}.
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3 Properties of Semantics

The characterisations of Theorem 1 gave us necessary and sufficient properties of
extension-sets under certain semantics. In this section, we will take a closer look at
the necessary properties, that is, properties that apply commonly to all extension-
sets of a certain semantics. In doing so, we focus on weakly admissible and weakly
preferred semantics, as well as undisputed and strongly undisputed semantics.
These semantics are related to each other as follows.

Proposition 3 (Subset Relations [BBU20, Thi23]). For every framework F ∈ FA, the
following subset relations hold:

• stb(F ) ⊆ wpr(F ) ⊆ wadm(F ) ⊆ cf(F );

• stb(F ) ⊆ sud(F ) ⊆ ud(F ) ⊆ cf(F ), as well as pr(F ) ⊆ ud(F ).

Although these subset relationships do not necessarily imply the transition of
properties of extension-sets between any two semantics involved, this can certainly
be the case in individual instances; for example, the property of preferred extension-
sets being well-defined does transfer to undisputed semantics. In any case, we will
investigate to what extent these relationships can provide indications regarding the
common properties of the semantics being analysed here.

Another lead we will be following is the symmetry of the definitions of classical
semantics and semantics based on the notions of weak admissibility and defense
(compare Definitions 5 and 10); we will investigate whether some of the classical
properties from Theorem 1 carry over to the corresponding non-admissible cases.

3.1 The Classical Properties

We start with the characteristic property of admissible semantics, namely conflict-
sensitivity, and retrace the proof idea.

Proposition 4 ([DDLW15]). Every admissible extension-set of F = (A,R) ∈ FA is
conflict-sensitive.

Proof-sketch. Let A,B ∈ adm(F ) with A ∪ B /∈ adm(F ). The only reason for A ∪ B
not to be admissible is that there are conflicting arguments a ∈ A and b ∈ B with
a → b or b → a, which therefore can never appear jointly in one of F ’s extensions;
this means that adm(F ) is conflict-sensitive.

Proposition 4 does not hold for weakly admissible semantics.

Proposition 5. Weakly admissible extension-sets are not necessarily conflict-
sensitive.

Proof. The framework in Figure 4 is a counter-example, since wadm(F ) is missing
{a, b} ∪ {b, c} = {a, b} ∪ {a, c} = {a, b, c}.

12
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Figure 4: The weakly admissible extension-set of this framework (F ) is not conflict-
sensitive; we have wadm(F ) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

Dunne et al. also introduce the following relaxation of the concept of being
conflict-sensitive.

Definition 18 ([DDLW15]). A set of argument-sets S ⊆ 2A is called com-closed if, for
every subset S′ ⊆ S and all a, b ∈

⋃
S′ holds that a, b occur jointly in some set of S,

then there is exactly one ⊆-minimal set in S that encompasses all of
⋃
S′ (this set is

called the unique completion-set).

Although the above property is tailored to apply to complete semantics
[DDLW15], let us see whether it applies to weakly admissible semantics as well.

Proposition 6. Weakly admissible extension-sets are not necessarily com-closed.

Proof. The framework in Figure 4 serves again as a counter-example, because its
extensions do not contain a completion-set that encompasses {a, b, c}.

The property of being com-closed generalises conflict-sensitivity by requiring
that, in the absence of evidence for conflict,4 not the exact union of two extensions
need to be present in the extension-set, but the union should at least be included
in another (unique) extension. The framework of Figure 4 contradicts attempts to
further relax this requirement when applied to weak admissibility, e.g. by dropping
uniqueness of the completion-set. We conjecture at this point that no analogous
property holds for weak admissibility and state the only property common to all
weakly admissible extension-sets remaining so far.

Proposition 7. Every weakly admissible extension-set contains the empty set.

Proof. The empty set is conflict-free and has no attackers.

We now turn to preferred extensions and recall their common properties.

Proposition 8 ([DDLW15]). Every preferred extension-set of a framework F ∈ FA is
non-empty, incomparable and conflict-sensitive.

4In the same sense as in the definition of conflict-sensitivity (Definition 16). The term (“evidently in
conflict”) will be formalised in Definition 19.
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Proof. Preferred extensions are⊆-maximal admissible sets, so pr(F ) is non-empty by
definition; pr(F ) does not contain a proper subset of any of its member sets and is
thus incomparable. Furthermore, since every preferred extension-set contains only
admissible extensions, it is also conflict-sensitive.

Only the properties of non-emptiness and incomparability transfer to the weakly
preferred semantics.

Proposition 9. Weakly preferred extension-sets are non-empty and incomparable,
but not necessarily conflict-sensitive.

Proof. Non-emptiness follows from the definition, and incomparability is implied
by ⊆-maximality. Regarding conflict-sensitivity, the framework in Figure 4 gives a
counterexample; its weakly preferred extensions are {a, b}, {a, c} and {b, c}.

We proceed to vacuous reduct semantics and repeat the following basic result.

Proposition 10 ([Thi23]). Undisputed extension-sets are non-empty, and strongly
undisputed extension-sets are incomparable.

For the sake of thoroughness we briefly examine whether the property of conflict-
sensitivity applies.

Proposition 11. Undisputed and strongly undisputed extension-sets are neither
necessarily conflict-sensitive nor necessarily com-closed.

Proof. A counterexample is again given by the framework (F ) in Figure 4; we have
sud(F ) = {{a, b}, {a, c}, {b, c}} and ud(F ) = {∅, {a}, {b}, {c}} ∪ sud(F ).

Let us investigate other properties that may be induced by the subset relations
of Proposition 3. The example from Figure 4 could suggest that at least the weakly
admissible extension-sets may be downward-closed.

Proposition 12. The weakly admissible as well as the undisputed extension-sets of
a framework are neither necessarily downward-closed nor necessarily tight.

Proof. Figure 5 gives a counterexample. Both extension-sets are obviously not
downward-closed: {a} is missing from wadm(F ), and neither {a} nor {b} is present
in ud(F ). Tightness would require that the absence of the aforementioned sets is
somehow reflected in wadm(F ) and ud(F ), but both contain {a, b}; and indeed, the
framework shows no conflict between a and b.

14



a

bz1 z3

z2

Figure 5: For this framework (F ), we have wadm(F ) = {∅, {b}, {a, b}} as well as
ud(F ) = {∅, {a, b}}. These extension-sets are neither downward-closed
nor tight.

3.2 Limits to the Expressiveness of Undisputed Semantics

At this point we may be led to suspect that the expressiveness of the undisputed
semantics is only limited by the requirement to produce non-empty extension-sets;
this suspicion will be proven wrong. We start with preliminaries.

Lemma 2. Every undisputed extension-set contains at least one preferred extension.
This preferred extension is the empty set if and only if the empty set is undisputed.

Proof. Let F ∈ FA. If ∅ /∈ ud(F ), then adm(F ∅) ⊈ {∅}, so there is a non-empty
S ∈ pr(F ), for which S ∈ ud(F ) by Proposition 3. If ∅ ∈ ud(F ), then adm(F ∅) ⊆ {∅}
and pr(F ) = {∅}.

The following concept was already essential for the definition of conflict-
sensitivity (Definition 16).

Definition 19. Let S ⊆ 2A, and let X,Y ∈ S. We say that X and Y are evidently in
conflict with respect to S when

∃x ∈ X, y ∈ Y : ∀S ∈ S : {x, y} ⊈ S.

For semantics that produce conflict-free extensions, lack of evidence of conflict
guarantees that no attacks exist between two sets. We state this for the case of ud.

Lemma 3. For F ∈ FA, let X,Y ∈ ud(F ). If X and Y are not evidently in conflict
with respect to ud(F ), then X ∩ Y + = ∅ = Y ∩X+.

Proof. The negation of Definition 19 states that for all pairs (x, y) ∈ X × Y we have
some S ∈ ud(F ) so that {x, y} ⊆ S; so no member of X can attack any member of
Y , and vice versa.

We continue with two technical lemmas that we will use immediately after.

Lemma 4. Let S,A1, . . . , An be sets so that
⋂

iAi = ∅ and S ∩ Ai ̸= ∅ for each Ai.
Then, S \Ai ̸= ∅ for at least one Ai.

Proof. From S \ Ai = ∅ follows S ⊆ Ai; requiring this for all Ai implies S ⊆
⋂

iAi,
and since S ̸= ∅, we have a contradiction.
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Lemma 5. For a framework F = (A,R) ∈ FA, let S ∈ adm(F ), and let S′ ⊆ A. Then
S \ S′ ∈ adm(FS′

).

Proof. All attackers of S that S′ defended against are removed in the reduct FS′
.

Finally, the following definition captures a class of extension-sets that cannot be
realised by undisputed semantics.

Definition 20. A set of sets S = {A1, . . . , An} ⊆ 2A (n > 1) is disjointly supported if
each Ai ̸= ∅,

⋂
iAi = ∅, and the Ai are pairwise not in evident conflict.

Example 6. The set {{a, b}, {b, c}, {a, c}} is disjointly supported.

Disjointly supported extension-sets are unrealisable by wadm simply because they
do not contain the empty set. For ud, the reason is more subtle.

Proposition 13. No disjointly supported extension-set is realisable by ud.

Proof. Let S = {A1, . . . , An} ⊆ 2A, so that each Ai ̸= ∅,
⋂

iAi = ∅, and no Ai, Aj are
evidently in conflict. Assume that there is a F ∈ FA with ud(F ) = S. From Lemma 2
we obtain the existence of a non-empty S ∈ S with S ∈ pr(F ). Furthermore, we
have S ∩ Ai

⊕ ̸= ∅ for all Ai, otherwise S ∈ adm(FAi), contradicting Ai ∈ ud(F ). We
also have S ∩ A+

i = ∅ by Lemma 3; this leaves S ∩ Ai ̸= ∅ for all Ai. Lemma 4 then
states that for at least one Aj ∈ S we have S \ Aj ̸= ∅, and by Lemma 5 we have
S \Aj ∈ adm(FAj ), again contradicting Aj ∈ ud(F ).

3.3 Characteristics of Non-admissible Semantics

The results from the previous subsections suggest the following conjecture.

Conjecture 1. Weakly admissible, weakly preferred, as well as undisputed and
strongly undisputed semantics are characterised as follows.

• Σwadm = {S ⊆ 2A | ∅ ∈ S};

• Σwpr = {S ⊆ 2A | S is non-empty and incomparable};

• Σud = {S ⊆ 2A | S is non-empty and not disjointly supported};

• Σsud = {S ⊆ 2A | S is incomparable}.

This conjecture can be proved by specifying construction methods for frameworks
that realise arbitrary extension-sets which feature the required properties. The rest
of the present work is dedicated to the study of such construction methods.
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4 Classical Framework Construction

We would like to investigate to what extent the necessary properties of the
extension-sets of various semantics determined in Section 3 are also sufficient, so
that extension-sets to which these properties apply are indeed realisable by the
respective semantics. One way to do this for a semantics is to specify a concrete
method that constructs a framework for a given extension-set, so that the extension-
set does indeed result from the semantics applied to the constructed framework. In
this section we analyse existing construction methods for frameworks and attempt
to isolate the concepts and strategies they contain.

4.1 The Canonical Frameworks

Non-emptiness, incomparability and conflict-sensitivity are not only necessary
properties of preferred extension-sets (Proposition 8); they are also sufficient for
their characterization, as the following construction shows.

Definition 21 (Canonical Argumentation Framework [DDLW15]). Let S ⊆ 2A be a
set of sets of arguments. The Canonical Argumentation Framework is the framework
F cf
S = (A,R) where

A =
⋃
S∈S

S

and
R = {(a, b) | a, b ∈ A and ∀S ∈ S : {a, b} ⊈ S} .

In F cf
S , an argument a attacks an argument b if and only if a and b do not occur

jointly in any of the sets of S; this ensures that conflict-free semantics (as well as
other derived semantics) applied to F cf

S will encompass at least all elements of S.
More concretely:

Proposition 14. Let σ ∈ {cf, adm, pr, stb}, and let S ∈ Σσ. Then S ⊆ σ(F cf
S ).

Proof. For S ∈ S, no attacks are constructed between a, b ∈ S, so S ∈ cf(F cf
S ). Since

all attacks are reciprocal, S defends itself and thus S ∈ adm(F cf
S ). If additionally

each S ∈ S is ⊆-maximal, then S ∈ pr(F cf
S ). Finally, assume S is tight, and let S ∈ S,

and a ∈
⋃
S with a /∈ S. Then one s ∈ S must never occur jointly with a in any

S ∈ S; thus by construction of F cf
S , s→ a, so S ∈ stb(F cf

S ).5

F cf
S is then further modified to contain additional arguments and attacks so that

admissible or preferred semantics will produce exactly the elements of S as their
extensions (as long as S has the adequate necessary properties), as defined below.

5Dunne et al. [DDLW15] prove the partial statements of this proposition in various places; we have
summarised them here.
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Definition 22 (Canonical Defence Framework [DDLW15]). Let S ⊆ 2A and let F cf
S be

the canonical argumentation framework for S. The canonical defence framework F adm
S

results from applying the following modifications to F cf
S = (A,R):

1. For every a ∈ A, let Sa
1 , . . . , S

a
n ∈ S be the extensions that contain a, and define

Da = {{s1, . . . , sn} | si ∈ Sa
i \ {a}} .

Note that this implies Da = ∅ if, for any i, Sa
i = {a}.

2. For each D ∈ Da, introduce a new argument zaD. This will create a total of
|Da| = (|Sa

1 | − 1) · . . . · (|Sa
n| − 1) new arguments.

3. Introduce attacks so that: (i) each zaD attacks itself; (ii) zaD is attacked by all
s ∈ D; and (iii) zaD attacks a.

The purpose of the above construction is to defend the membership of each a ∈ A
in each of the sets Sa

i . To this end, Da collects all combinations of arguments that
appear jointly with a in extensions of S, and for each such combination D ∈ Da, an
attacker zaD of a is introduced, that is self-defeating and against which the members
of all extensions that contain a (except a itself) defend. For a conflict-sensitive S that
contains the empty set, this is sufficient to single out exactly the members of S as
the set of admissible extensions; or as the set of preferred extensions, if S is instead
non-empty, conflict-sensitive, and incomparable [DDLW15]. To summarise:

Proposition 15 ([DDLW15]). Let S ⊆ 2A, and let F adm
S be the canonical defence

framework for S. If S is conflict-sensitive and contains ∅, then adm(F adm
S ) = S. If S

is non-empty, conflict-sensitive and incomparable, then pr(F adm
S ) = S.

Example 7. Figure 6 shows the defence framework for S = {∅, {a, b}, {b, c}}. We
have Da = {{b}}, Db = {{a, c}}, and Dc = {{b}}, as well as za{b} = z1, zb{a,c} = z2,
and zc{b} = z3.

a

b

c

z1
z2

z3

Figure 6: The defence framework F adm
S for S = {∅, {a, b}, {b, c}}.

In Definition 21 we introduced attacks between arguments in order to prevent
them to occur jointly in any extension of the constructed framework. In view of later
applications, we would like to point out that this is indeed the only mechanism that
is able to separate extensions under admissible semantics.
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Proposition 16. Let F ∈ FA, and let X,Y ∈ adm(F ) so that X ∪ Y /∈ adm(F ). Then
X ∪ Y /∈ cf(F ).

Proof. X ∪ Y defends itself against all attacks directed towards either X or Y . If no
attack originates from within X ∪ Y , then X ∪ Y is already admissible.

The final construction method we want to investigate in this subsection aims at
stable semantics. The method starts from the canonical argumentation framework
and subsequently excludes unwanted extensions.

Definition 23 (Stable Canonical Framework [DDLW15]). Let S ⊆ 2A be a tight and
incomparable extension-set and let F cf

S be its canonical argumentation framework.
The stable canonical framework F stb

S results from applying the following modification
to F cf

S :

1. Compute X = stb(F cf
S ) \ S.

2. For each X ∈ X, introduce a single self-attacking argument zX , and for each
a ∈ (

⋃
S) \X , add an attack a→ zX .

This construction excludes all unwanted sets X ∈ X from the stable extensions,
because they do not attack the argument zX which they do not contain (compare
Definition 5), in contrast to the desired sets in S. Additionally, zX is not eligible for
inclusion in an extension since it defeats itself. This is summarised in the following
proposition.

Proposition 17 ([DDLW15]). Let S ⊆ 2A be incomparable and tight, and let F stb
S be

the stable canonical framework for S. Then, stb(F stb
S ) = S.

4.2 Framework Translations

Further construction ideas are presented by Dvořák and Woltran [DW11] as well
as Dvořák and Spanring [DS17], this time in the context of translations between
frameworks, which (roughly speaking) are intended to preserve extensions across
different semantics.

Definition 24 ([DW11]). A framework translation is a mapping FA → FA. With respect
to two semantics σ, σ′ : FA → 22

A
and an arbitrary framework F = (A,R) ∈ FA, a

framework translation T is called

• exact, if σ(F ) = σ′(T (F ));

• faithful, if σ(F ) = {E ∩ A | E ∈ σ′(T (F ))} and |σ(F )| = |σ(T (F ))|.

For example, any given framework F = (A,R) ∈ FA can be exactly translated
to a new framework F ′ so that adm(F ) = com(F ′), as follows [DW11]: (i) for each
argument a ∈ A, add a new argument za; (ii) add reciprocal attacks between a and
za; and (iii) make za attack itself. The following concrete example illustrates this.
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a b c

a b c

za zb zc

Figure 7: A translation between two frameworks that preserves the extension-set
from admissible to complete semantics.

Example 8. The admissible extensions of the left framework in Figure 7 are identical
to the complete extensions of framework to the right, namely {∅, {a}, {c}, {a, c}}.

The above construction exploits the fact that complete extensions are required
to contain all arguments they defend: since every original argument has its own
attacker which only the original argument defends against, the admissible sets of
the original framework are exactly the complete sets in the translation.

We are interested in framework translations primarily in order to see whether the
constructions contain ideas that may also be useful for the non-admissible case. In
doing so, we are particularly looking at exact translations, since they need to make
sure that extensions are shaped exactly as required, often by employing mechanisms
to filter out undesired elements. Such mechanisms are indeed at work in all of the
constructions we have investigated so far, as we will point out in the next subsection.

4.3 Construction Strategies

In the previous subsections we have studied various construction methods for
frameworks. These methods appear to have certain commonalities, which we aim
to identify below.

Observation 1. The classical framework construction methods studied so far exhibit
the following features.

• A mechanism to separate extensions, as employed in the construction of the
canonical argumentation framework, whose conflict-free extensions exactly
match its admissible extensions.

• The use of a base framework and its subsequent customization: in the case of the
canonical frameworks, the canonical argumentation framework serves as base
construction, while the translation algorithm we have examined augments an
existing framework.

• Filtering strategies that retain only desired extensions, interlinking the extensions
of the base framework with additional constructs that utilise the defining
properties of the respective semantics in a deliberate manner.

• Suppression of arguments which are essential in the construction but should not
appear in the extensions themselves, by making them self-attacking.

20



5 Strategies for the Non-admissible Case

We would like to see how the features that were identified in Observation 1 translate
to strategies for the construction of frameworks that attempt to realise extension-sets
under non-admissible semantics.

5.1 Suppression of Arguments

All classical construction methods have in common that newly added arguments,
which are essential for the effectiveness of the construction but should not appear in
the extensions themselves, can simply be filtered out by making them self-attacking.
Unfortunately, this strategy does not readily translate to non-admissible semantics.
In the case of weakly admissible semantics, the reason for this is given by the below
proposition.

Proposition 18 ([BBU20]). Let F = (A,R) ∈ FA, let A◦ = {a ∈ A | (a, a) /∈ R}, and
let F ◦ = F |A◦ . For σ ∈ {wadm,wpr}, we have σ(F ) = σ(F ◦).

This means that self-attacking arguments can be neglected for both wadm and wpr,
so they cannot have the intended effect in the construction algorithms previously
considered. The same is not true for undisputed and strongly undisputed semantics
however, as the next example shows.

Example 9. In the framework from Figure 8 (F ), we have ud(F ) = {∅, {c}} and
sud(F ) = ∅, but ud(F ◦) = sud(F ◦) = {∅}.

a

d

c

b

Figure 8: Undisputed and strongly undisputed semantics applied to this framework
are not invariant with respect to removal of self-attacking arguments.

Although self-attacking arguments can never be part of an undisputed or strongly
undisputed extension, they can still have an effect on the admissibility of the reduct
(as was the case in the above example with the set {c}). Later on (in Proposition 26)
we will use this feature in a systematic way.

5.2 Separating Extensions

We turn to weakly admissible semantics and investigate mechanisms that can cause
extensions to be separated from each other in an extension-set.
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Observation 2. In the classical case, the only reason for the union of two admissible
extensions not to be admissible as well is that one extension attacks the other so that
the union would not be conflict-free (Proposition 16). Non-admissible semantics
introduce another mechanism that is able to separate extensions, namely odd cycles,
as shown in the following example.

Example 10. Figure 9 shows the three interlinked odd cycles that we already have
encountered in previous examples. Call this framework F . To the left, we highlight
the reduct F {a,b}: accepting the arguments {a, b} leaves z in an odd cycle, so that it
presents no serious threat. In the right picture we see that {a, b} ∪ {b, c} = {a, b, c}
cannot be jointly accepted, since in the reduct F {a,b,c}, {z} would be admissible.
This alone is reason enough for {a, b, c} not to be accepted as {ud, sud}-extension; it
disqualifies as {wadm,wpr}-extension as well because z attacks a, b, c.

za a

z

c

zc

zb

b

za a

z

c

zc

zb

b

Figure 9: Mechanics of odd cycles in non-admissible semantics.

We would like to formalise the mechanics at work in Example 10. In order to do
this, we need the following two results. The first is the Modularisation Theorem by
Baumann et al.

Theorem 3 (Modularisation [BBU22]). Let F ∈ FA be a framework, let X ∈ wadm(F ),
and let Y ∈ wadm(FX). Then X ∪ Y ∈ wadm(F ).

The second prerequisite concerns the composition of the reduct, which turns out
not to be commutative, in the sense that (FX)Y = (F Y )X does not generally hold.
The below example conveys the intuition.

Example 11. Consider the framework from Figure 10 (call it F ), and let X = {a}
and Y = {b}. We have FX = ({d}, ∅) = (FX)Y ̸= (F Y )X = (∅, ∅) = FX∪Y .

The following lemma, along with its accompanying corollary, state that the order
of reduct construction is not significant as long as the involved sets do not attack
each other.6

Lemma 6. Let F = (A,R) ∈ FA be a framework, and let X,Y ⊆ A. If X+ ∩ Y = ∅,
then

(
FX

)Y
= FX∪Y .

6Baumann et al. [BBU22, Proposition 3.3] give a similar proposition, but require X ∩Y = ∅ as well as
X ∪ Y ∈ cf(F ).
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a b

c d

Figure 10: The reduct of this framework with respect to {a} eliminates {a, b, c}, and
the subsequent reduct with respect to {b} cannot affect d any more.

Proof. Let FX = (AX ,RX) and AX = A \ (X ∪X+
R), where we write X+

R instead of
X+, as we need to be careful about which attack relation we refer to. We then have
(FX)Y = (AX,Y ,RX,Y ), where

AX,Y =
(
A \ (X ∪X+

R)
)
\ (Y ∪ Y +

RX
)

= A \ (X ∪ Y ∪X+
R ∪ Y +

RX
),

while, for FX∪Y = (AXY ,RXY ), we have7

AXY = A \ (X ∪ Y ∪ (X ∪ Y )+R)

= A \ (X ∪ Y ∪X+
R ∪ Y +

R ).

Finally, since X+
R ∩ Y = ∅, Y attacks the same arguments in R as in RX , therefore

Y +
R = Y +

RX
and AX,Y = AXY .

Corollary 2. Let F = (A,R) ∈ FA, and let X,Y ⊆ A, so that X ∪ Y ∈ cf(F ). Then
(FX)Y = (F Y )X = FX∪Y .

We can now describe a structural feature that is necessarily present in situations
as in Example 10.

Proposition 19. Let F ∈ FA, and let X,Y ∈ wadm(F ) so that X ∪ Y ∈ cf(F ) but
X ∪ Y /∈ wadm(F ). Then there are sets ZX , ZY ∈ wadm(FX∪Y ) where ZX → X and
ZY → Y .

Proof. Since X and Y are conflict-free, by definition of weak admissibility there is a
set Z ∈ wadm(FX∪Y ) so that Z → X ∪ Y ; in fact, there may be many such sets. Say
that none of these sets attack Y . Because of conflict-freeness of X and Y we have
FX∪Y = (FX)Y ; so Y is not attacked from

⋃
wadm((FX)Y ), i.e., Y ∈ wadm(FX).

From Theorem 3 then follows X ∪ Y ∈ wadm(F ), a contradiction.

Example 12. Let F be the argumentation framework from Figure 9, and consider
X = {a, b} and Y = {b, c}, both of which are weakly admissible extensions of F .
The union X ∪ Y however is not weakly admissible. Since X ∪ Y is conflict-free,
Proposition 19 requires the existence of attacks on both X and Y originating from a
weakly admissible set of FX∪Y = ({z}, ∅); indeed, {z} fits this requirement.

7Read X,Y as “X , then Y ”, and XY as “X and Y simultaneously”.
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We continue our investigation of structural features with the case of undisputed
semantics. While weak admissibility requires that actual attacks originate from
weakly admissible sets of the reduct in order to inhibit the existence of extensions,
for undisputedness the mere presence of a non-empty admissible set in the reduct
suffices; consequently, we may expect to find different structural features than those
from Proposition 19 when vacuous reduct semantics are concerned. Let us look at
an example.

Example 13. Consider the framework (F ) of Figure 11. Its only weakly admissible
extension is the empty set, but its undisputed extensions are ∅, {a}, and {b}, though
not {a, b}. Note that the reduct F {a} (depicted to the left) contains no admissible
set; the same is true for F {b}. In F {a,b} however (shown in the picture to the right),
{z2, z3} is admissible. Neither {a} nor {b} are weakly admissible, because both are
attacked from weakly admissible sets of their reduct ({z3} and {z2} respectively).

a

z1 z2

z3 z4

b a

z1 z2

z3 z4

b

Figure 11: In this framework, {a, b} is not among the undisputed extensions.

We now formalise two structural features of frameworks that separate extensions
under undisputed semantics.

Proposition 20. Let F ∈ FA, and let X,Y ∈ ud(F ) so that X ∪ Y ∈ cf(F ), but at the
same time, X ∪ Y /∈ ud(F ). Then both X and Y have attackers in F against which
they do not defend.

Proof. The prerequisites demand X ⊈ Y and Y ⊈ X , otherwise X ∪ Y ∈ ud(F ).
As X ∪ Y ∈ cf(F ), the remainder X \ Y = X \ Y ⊕ is non-empty. Assume that X
is admissible in F ; any threats that X ∩ Y defends against then disappear in the
reduct F Y , so that the remainder X \ Y ⊕ remains admissible in F Y , contradicting
Y ∈ ud(F ). So X /∈ adm(F ). The situation for Y is symmetrical.

Example 14. Applying Proposition 20 to Figure 11, we have X = {a}, Y = {b}, and
find z3 → X and z2 → Y ; neither X nor Y defend themselves.

Proposition 21. Let F ∈ FA, and let X,Y ∈ ud(F ) so that X ∪ Y ∈ cf(F ), but at
the same time, X ∪ Y /∈ ud(F ). Then there is a non-empty admissible extension
S ∈ adm(FX∪Y ) that is attacked by both X+ and Y +.

Proof. The existence of S is guaranteed by X ∪ Y ∈ cf(F ) and X ∪ Y /∈ ud(F ). All
of the arguments of S are also present in FX . Since S /∈ adm(FX), there must be
an attack a → S in FX that S does not defend against. After removal of Y ⊕ and its
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related attacks from FX we obtain (FX)Y = FX∪Y , where this same attack a → S
is no longer threatening the admissibility of S. The formation of the reduct cannot
have added any structures, particularly, it cannot have introduced a defence S → a;
we conclude that the attack must have originated from Y +. For reasons of symmetry
we have both X+ → S and Y + → S.

Example 15. In the framework (F ) of Figure 11, let X = {a}, Y = {b}, and let
S = {z2, z3} ∈ adm(FX∪Y ). We find X+ = {z1} → S as well as Y + = {z4} → S.

5.3 Base Frameworks

We would like to find frameworks whose non-admissible extensions encompass a
given extension-set, provided that the extension-set satisfies necessary properties,
as in the following definition.

Definition 25 (Base Framework). With respect to a semantics σ : FA → 22
A

and a
set of extension-sets Σσ ⊆ 22

A
we call the mapping S 7→ FS a base framework if for all

S ∈ Σσ we have S ⊆ σ(FS).

We have seen an example for a base framework in Proposition 14:

Example 16. For each σ ∈ {cf, adm, pr, stb} and for all S ∈ Σσ (from Theorem 1), the
construction S 7→ F cf

S of the canonical argumentation framework (Definition 21) is a
base framework with respect to σ and Σσ.

As in the above example, we hope to find base frameworks for the non-admissible
cases as well, so that these can be modified, or filtered respectively, in a second step
in order to arrive at a realisation of a given extension-set. So let us see whether
the canonical argumentation framework from Definition 21 can also function as a
base framework for non-admissible semantics.8 We start with weakly admissible
semantics and assume that they are characterised according to Conjecture 1.

Proposition 22. Let Σwadm = {S ⊆ 2A | ∅ ∈ S}. For all extension-sets S ∈ Σwadm we
have S ⊆ wadm(F cf

S ).

Proof. F cf
S constructs reciprocal attacks only between arguments that do not appear

jointly in any S ∈ S, so each S ∈ S defends itself and S ∈ adm(F cf
S ). Furthermore,

adm(F cf
S ) ⊆ wadm(F cf

S ) holds by Proposition 1.

Thus, S 7→ F cf
S is a base framework with respect to weakly admissible semantics.

For weakly preferred, undisputed and strongly undisputed semantics the situation
is different.

8We introduced the base framework as a mapping in order to emphasise the dependency on the
parameter S. In the following, we will generally not differentiate terminologically between the
mapping and the constructed framework.
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Proposition 23. The canonical argumentation framework is not a base framework
for σ ∈ {wpr, ud, sud} (with respect to Σσ from Conjecture 1).

Proof. Let S = {{a, b}, {b, c}, {a, c}}; S is incomparable. We have F cf
S = ({a, b, c}, ∅),

and S ⊈ wpr(F cf
S ) = ud(F cf

S ) = sud(F cf
S ) = {{a, b, c}}.

Next we investigate the canonical defence framework from Definition 22. Note
that due to its construction, (F adm

S )◦ = F cf
S ,9 so the above results transfer in the

case of weakly admissible semantics. Let us see however whether S 7→ F adm
S can be

effective for undisputed semantics.

Proposition 24. The canonical defence framework is neither a base framework for
ud nor for sud (with respect to Σud,Σsud from Conjecture 1).

Proof. Consider again the incomparable extension-set S = {{a, b}, {b, c}, {a, c}}. Its
canonical defence framework is depicted in Figure 12; for this framework, we have
S ⊈ ud(F adm

S ) = sud(F adm
S ) = {{a, b, c}}.

z3

z2

z1b

ca

Figure 12: The canonical defence framework F adm
S , constructed for the extension-set

S = {{a, b}, {b, c}, {a, c}}.

Weakly admissible semantics possess an even simpler base framework than the
canonical argumentation framework.

Proposition 25. S 7→ F ∅
S = (

⋃
S, ∅) is a base framework with respect to σ = wadm

and S ∈ Σσ = {S′ ⊆ 2A | ∅ ∈ S′}.

Proof. In F ∅
S = (A, ∅), all subsets of A are unattacked and conflict-free.

A small modification yields a base framework for undisputed semantics.

Proposition 26. Let z /∈
⋃
S. S 7→ F ud

S = (
⋃
S ∪ {z}, {(z, z)} ∪ {(z, s) | s ∈

⋃
S}) is a

base framework with respect to σ = ud and Σσ = Σud from Conjecture 1.

Proof. We have ud(F ud
S ) = 2(

⋃
S), because every S ⊆

⋃
S is conflict-free, and its

complement
⋃
S\S is attacked by the self-attacking z and thus is not admissible.

Example 17. Figure 13 shows the base framework F ud
S for any S with

⋃
S = {a, b, c}.
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z

a

b c

Figure 13: The undisputed extension-set of this framework is the set of all subsets of
the original arguments {a, b, c}.

The base frameworks for wadm and ud described in Propositions 25 and 26 are
not suitable for wpr and sud. The reason for this is that both constructions only
take into account the union of arguments and do not involve the structure of the
extension set in any other way in the construction. While both wadm and ud are
able to produce the maximal extension-set 2A for any A ⊆ A, thus subsuming any
extensions of interest, wpr and sud will only produce incomparable extension-sets,
and the constructions that worked well for wadm and ud lack features that would
separate extensions from another. We will revisit the underlying problem, namely
the inclusion of mechanisms that separate extensions into the construction of base
frameworks, in Subsection 6.5.

5.4 Filtering

The question that we ask in this subsection is this: Given a framework F for which
a semantics produces an extension-set that is a superset of the set that we desire to
obtain, how can this framework be modified to remove the unwanted extensions?
More formally, we are looking for a mapping as in the following definition.

Definition 26. With respect to a semantics σ, a signature Σσ, and a set of frameworks
F′ ⊆ FA, a filter is a mapping f : F′ × 22

A → FA, so that σ(f(F,X)) = σ(F ) \ X, as
long as σ(F ) \ X ∈ Σσ. A filter is total with respect to its first argument if F′ = FA,
otherwise it is partial.

In the above definition, X is the set of unwanted extensions. We have already seen
such mappings at work.

Example 18. For σ = stb we used the following total filter (cf. Definition 23):

fstb((A,R),X) = (A′,R′)

where A′ = A ∪ {zX | X ∈ X},
R′ = R∪ {(zX , zX) | X ∈ X}

∪ {(a, zX) | X ∈ X ∧ a ∈ A \X}.

9The notation F ◦ was introduced along with Proposition 18.
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The concept of a filter shares similarities with framework translations which we
described in Subsection 4.2; but instead of attempting to preserve extension-sets
between different semantics, we seek to remove certain extensions under identical
semantics. The following terminology is borrowed from the context of framework
translations [DS17].

Definition 27. A filter f is called covering if for every F = (A,R) and every X ⊆ 2A

the resulting framework f(F,X) = (A′,R′) satisfies A ⊆ A′ andR ⊆ R′.

This means that the mapping performed by a covering filter does only augment,
but not alter existing structures. We observe that filters applied in the classical cases
generally appear to be covering.

Observation 3. The filter from Example 18 is covering, and the construction of the
canonical defence framework (Definition 22) employs a covering filter as well.10

The fact that these filters are covering seems to make a significant contribution to
ensuring that their designs remain comprehensible and universally applicable. In
a first attempt to develop a corresponding understanding of non-admissible filter
mechanisms, let us look at the problem posed in the following example.

Example 19. Consider the following problem: for the framework (F ) in Figure 14,
we have wadm(F ) = {∅, {a}, {a, b}}. Under weakly admissible semantics, how
could a covering filter f proceed in order to eliminate the extension {a}, so that
wadm(f(F, {{a}})) = {∅, {a, b}}?

a

b

z1

z2

Figure 14: What modifications are needed to filter out one of this framework’s
weakly admissible extensions?

Possible solutions are shown in Figure 15; all frameworks depicted in there have
the same weakly admissible extension-set of {∅, {a, b}}. Every solution required
at least one additional argument, although solutions exist that utilize more than
one auxiliary argument. The solutions are also (locally) minimal in the sense that
removing an argument or an attack renders the respective solution invalid.

The solutions to the problem of Example 19 were found through an automated
search that applied random augmentations to the given framework. The solutions

10Additionally, the framework translations featured in the work of Dvořák and Spanring [DS17] are
generally covering; some are even embedding, meaning that no additional attacks between original
arguments are introduced by the translation.
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b

a

z3

z2

z1

b

a

z3

z4
z3

a

b

z1

z2

z4

z5

Figure 15: Solutions to the problem posed in Example 19. Added structures have
been emphasized; all solutions are strict augmentations.

do not look particularly intuitive; rather, the fact that they actually do represent
solutions seems to be more of a coincidence, and no obvious comprehensive and
universally applicable pattern does appear to emerge.

Let us see if the situation is any different for undisputed semantics.

Example 20. Figure 16 shows the counterpart of Figure 14, this time for the case
of undisputed semantics. The undisputed extension-set is identical to the weakly
admissible one of the previous example, namely {∅, {a}, {a, b}}, and we are looking
again for a way to filter the extension {a}while covering the original framework.

b

a

z1

z2

Figure 16: This framework has the undisputed extension-set {∅, {a}, {a, b}}.

Several minimal solutions are presented in Figure 17. All frameworks shown
there have the same set of undisputed extensions, namely {∅, {a, b}}.

Much like in the previous Example 19, here as well it appears difficult to recognise
patterns that could provide a template for a universally applicable filter method.

The impression left by our investigations so far is ambivalent. On the one hand,
the classical recipe of creating a base framework and then applying a filter seems to
have ample expressive power even in the non-admissible case. On the other hand,
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z2

z1

b

a

z3

z2

z1

b

a

z3 z4 z3

a

b

z1z2

Figure 17: Some solutions to the problem from Example 20.

the filter algorithms appear to be much more complex than in the classical case,
provided they exist and can be found at all. In the next section, we will further
pursue the approach described in order to gain an impression of its possibilities and
limitations.
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6 Realisation of Non-admissible Extension-Sets

In this section we explore strategies and construction methods that may be useful for
the realisation of non-admissible extension-sets. In doing so, we will focus primarily
on the undisputed semantics, as it is the conceptually simplest compared to the
other non-admissible semantics that we studied so far.

6.1 Minimal Scenarios

Examples 19 and 20 demonstrated that a filter problem can typically have many
solutions which differ in the number of attacks and arguments being added to an
argumentation framework. We would like to better understand what the minimum
elements are that have to be present in a solution; to this end, we examine in the
following the expressive power of a filter that only adds attacks, but no auxiliary
arguments.

Example 21. Let S ⊆ 2A be an extension-set, let F = F ud
S be the base framework

from Proposition 26, let a, b ∈
⋃

S, and let z be the auxiliary argument attacking all
other a ∈

⋃
S. Adding the following attacks causes the stated filter operations on

the framework’s undisputed extension-set:

• a→ a: removes {S ∈ ud(F ) | a ∈ S};

• a→ b: removes {S ∈ ud(F ) | a ∈ S ∧ b ∈ S};

• a→ z: removes {S ∈ ud(F ) | S ̸=
⋃
S}.

The operations from Example 21 apply only one attack each. There are also other,
less obvious filter operations that use several attacks simultaneously.

Example 22. Figure 18 shows some filter operations on the base framework F ud
S ,

instantiated for
⋃
S = {a, b, c}. Each filter operation uses multiple attacks but does

not introduce any new arguments.

a

b

c

z

(a) ud(F ) = {{a}, {b}, {c}}

a

b

c

z

(b) ud(F ) = {{a, b}}

a

b c

z

(c) ud(F ) = {{a, b}, {a, c}}

Figure 18: Filter operations that apply multiple attacks, and their outcomes.
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The obvious question now is whether filters of the type being analysed here offer
sufficient expressive power to remove arbitrary elements from the extension-set.
The following case study shows that, in general, this question must be answered
negatively.

Case Study 1. We conduct an exhaustive search over all attacks that can possibly
be applied to F ud

S for a problem size of 3, i.e.,
⋃
S = {a, b, c}, and record their effect

on ud(F ud
S ). The number of scenarios to consider is 24

2−4−3 − 1 = 511, taking into
account the four attacks that are invariably present in F ud

S , as well as the fact that
we do not need to consider self-attacking arguments a, b, c. From the 256 subsets of
2{a,b,c}, 38 do not contain all of the arguments {a, b, c}; from the remaining 218 sets,
53 are disjointly supported. Subtracting these, we arrive at 165 interesting subsets
of 2{a,b,c}, and we would like to see how many can be realized by our construction.

Result. Only 30 out of the 165 interesting extension-sets were realized, although
each of the 511 attack scenarios had an effect on the undisputed extension-set. The
results are summarised in Table 1, where isomorphic11 extension-sets have been
omitted.

Realised extension-set Attacks, augmenting F ud
S

{{a, b, c}} a→ z
{{a, c}, {b, c}} a→ b, a→ z, b→ a, b→ z
{{a}, {b, c}} a→ b, a→ c, b→ a, b→ z
{{b}, {a, c}, {b, c}} a→ b, a→ z, b→ a
{{a}, {c}, {b, c}} a→ b, a→ c, a→ z, c→ a
{{a}, {b}, {c}} a→ b, a→ c, a→ z, b→ a, b→ c, c→ a
{{a}, {b}, {c}, {b, c}} a→ b, a→ c, a→ z, b→ a, c→ a
{∅, {a}, {b}, {c}} a→ b, a→ c, b→ c
{∅, {a}, {b}, {c}, {b, c}} a→ b, a→ c
{∅, {a}, {b}, {c}, {a, c}, {b, c}} a→ b

Table 1: Results of Case Study 1. Extension-sets isomorphic to the ones presented
here are not included.

As we will see, the low number of extension sets realised is at least partly due
to the base framework offering insufficient potential for modification. Below we
introduce a base framework that allows for a wider range of attack options.

Proposition 27. For a given S ∈ Σud (from Conjecture 1), let A =
⋃
S, and for each

a ∈ A, introduce a new argument za. The construction

S 7→ F ud+
S = (A ∪ {za | a ∈ A}, {(za, a) | a ∈ A} ∪ {(za, za) | a ∈ A})

is a base framework with respect to ud and Σud, and we have ud(F ud+
S ) = 2A.

11Two extension-sets are isomorphic if the one extension-set results from a one-to-one renaming of the
arguments of the other extension-set.

32



Proof. Every S ⊆ A is conflict-free; S is only attacked from self-attacking arguments
{za | a ∈ A}, so that the reduct with respect to S is adm-vacuous.

Example 23. Figure 19 shows the base framework F ud+
S for

⋃
S = {a, b, c}.

a b c

za zb zc

Figure 19: A base framework for ud, constructed from three arguments.

Compared to F ud
S , the framework F ud+

S offers additional attack options.

Example 24. Adding the following attacks has the stated effects on the undisputed
extension-set of F ud+

S :

• a→ za: removes {S ∈ ud(F ) | a /∈ S};

• a→ zb (a ̸= b): removes {S ∈ ud(F ) | a ∈ S ∧ b /∈ S}.
Repeating the previously conducted case study using this new base framework,

we expect to find a wider range of extension-sets being realised.

Case Study 2. We use the same setup as in Case Study 1 but exchange the base
framework for F ud+

S . The number of attack scenarios is now considerably higher,
namely 26

2−6−3 − 1 ≈ 108.

Result. 96 out of the 165 interesting extension-sets were realized; except for a
tiny fraction of around 10−4, all attack scenarios had an effect on the undisputed
extension-set of the original framework. The realised extension-sets included all
realised sets from Case Study 1; we summarise the results in Table 2.

The inability to realise all conceivable and interesting extension-sets is still, at least
in part, caused by the limited expressiveness of our construction, as the following
example shows.

Example 25. The extension-set {∅, {a, b, c}} was among the unrealised extension-
sets of Case Study 2. Figure 20 however shows that a realising framework exists,
which is not an augmentation of the previously considered base framework.

The minimal scenarios that we investigated in this subsection had the advantage
that they allowed an exhaustive search over all possible modifications of the base
framework. Between Case Studies 1 and 2 we have seen some evidence that an
increased complexity of the base framework may likely give way to an increased
expressiveness of the resulting construction. Unfortunately, exhaustive analyses of
even more complex scenarios than in Case Study 2 already become computationally
unfeasible, so we will turn to a different strategy in the next subsection.
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Realised extension-set Attacks, augmenting F ud+
S

{{a, b, c}} a→ za, a→ zb, a→ zc
{{a, c}, {b, c}} a→ b, a→ za, a→ zc, b→ a, b→ zc
{{a}, {b, c}} a→ b, a→ c, a→ za, b→ a, b→ zc
{{b}, {a, c}, {b, c}} a→ b, a→ za, a→ zc, b→ a
{{a}, {c}, {b, c}} a→ b, a→ c, a→ za, c→ a
{{a}, {b}, {c}} a→ b, a→ c, a→ za, b→ a, b→ c, c→ a
{{a}, {b}, {c}, {b, c}} a→ b, a→ c, a→ za, b→ a, c→ a
{∅, {a}, {b}, {c}} a→ b, a→ c, b→ c
{∅, {a}, {b}, {c}, {b, c}} a→ b, a→ c, zc → zb
{∅, {a}, {b}, {c}, {a, c}, {b, c}} a→ b, zc → zb
{{b, c}, {a, b, c}} b→ zb, b→ zc
{{c}, {b, c}, {a, b, c}} a→ zb, c→ zc
{{c}, {a, c}, {b, c}} a→ b, c→ zc
{∅, {a}, {b, c}} a→ b, a→ c, b→ za, b→ zb, c→ a
{{c}, {a, c}, {b, c}, {a, b, c}} c→ zc
{∅, {c}, {b, c}, {a, b, c}} a→ zb, b→ zc
{∅, {c}, {a, c}, {b, c}} a→ b, a→ zc, b→ zc
{{a}, {b}, {a, c}, {b, c}} a→ b, a→ za, b→ a
{∅, {b}, {a, c}, {b, c}} a→ b, a→ zc, b→ a, c→ zb
{∅, {a}, {c}, {b, c}} a→ c, b→ a, b→ zc
{∅, {c}, {a, c}, {b, c}, {a, b, c}} a→ zc, b→ zc
{∅, {b}, {c}, {b, c}, {a, b, c}} a→ zb, a→ zc
{∅, {b}, {c}, {a, c}, {b, c}} a→ b, a→ zc, zc → zb
{∅, {a}, {b}, {a, c}, {b, c}} a→ b, b→ a, c→ za
{∅, {b}, {c}, {a, c}, {b, c}, {a, b, c}} a→ zc, zc → zb
{∅, {a}, {b}, {c}, {a, c}, {b, c}, {a, b, c}} a→ zc, b→ za, za → c, zb → a

Table 2: Results of Case Study 2, showing only representatives of their respective
isomorphism classes. The first ten results (separated by the dashed line)
realise the same extension-sets as in Case Study 1.

a

bc

z1

z2z3

Figure 20: The undisputed extension-set of this framework is {∅, {a, b, c}}.
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6.2 Transformations and Building Blocks

The consideration of minimal scenarios in the previous subsection soon led us to
a complexity limit beyond which exhaustive searches were no longer feasible. In
order to uncover further construction patterns, we pursue a different strategy in this
subsection: instead of inserting arbitrary attacks into a given base framework, we
define a number of mappings, which we will refer to as transformations, that each
alter a given framework in a certain manner, and then proceed to combine these
transformations.

The first transformation that we will be using adds reciprocal attacks between two
arguments.

Transformation 1 (Reciprocal attacks). For (A,R) ∈ FA and a, b ∈ A, we define the
mapping

α(a, b) : (A,R) 7→

{
(A,R∪ {(a, b), (b, a)}), if a, b ∈ A;
(A,R), otherwise,

with the special case
α̂(a) = α(a, a).

The second transformation is a merge operation.

Transformation 2 (Merge). Let (A,R) ∈ FA, let S ⊆ A, and let z ∈ A \ A. We define
a replace operator

rzS : A→ A, a 7→ rzS(a) =

{
z, if a ∈ S;

a, otherwise,

which we use in the mapping

µ(S, z) : (A,R) 7→ ({rzS(a) | a ∈ A}, {(rzS(a), rzS(b)) | (a, b) ∈ R}).

Example 26. Figure 21 illustrates an instance of the merge transformation µ.

a

b

c

d

e

f

a

z

c

d

f

Figure 21: Applying the transformation µ({b, e}, z) to the left framework yields the
resulting framework to the right.

The final transformation removes arguments from the framework.
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Transformation 3 (Removal). For F = (A,R) ∈ FA and S ⊆ A, we define

δ(S) : F 7→ F |A\S .

For a concrete application we continue to focus on the case in which we attempt
to realise undisputed extension-sets containing three arguments a, b, c. Our starting
point this time is the framework from Figure 22, which is not a base framework (its
undisputed extension-set is {∅}).

a

za1 za2

b

zb1 zb2

c

zc1 zc2

Figure 22: These three odd cycles serve as starting scenario to which subsequent
transformations are applied.

Case Study 3. We apply the above defined transformations to the framework from
Figure 22, which we call F0. For the concrete case of the three arguments a, b, c,
we identify the following building blocks, i.e. single and composed transformations
which yield distinctive undisputed extension-sets when applied to F0:

• α̂(zx2) for x ∈ {a, b, c};

• α(x, zy2) for x, y ∈ {a, b, c} and x ̸= y;

• α(x, y) ◦ α̂(zx1) ◦ α̂(zy1) ◦ α̂(zx2) ◦ α̂(zy2) for (x, y) ∈ {(a, b), (b, c), (c, a)};

• µ({zx2, zy2}, z) for (x, y) ∈ {(a, b), (b, c), (c, a)} and a new argument z;

• δ({zx1, zx2, z}) for x ∈ {a, b, c}.

This way we can instantiate 18 concrete building blocks in total, which can then
arbitrarily be combined, so that we arrive at 218 = 262144 different possibilities
to consider. For each of these possibilities we compute the resulting framework
and its undisputed extension-set, and record any realisations that have not been
encountered in Case Studies 1 and 2.

Result. The ten new construction recipes that were discovered this way are listed
in Table 3. In summary, construction patterns for 35 different isomorphism classes
representing extension-sets that contain three arguments were found.
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Realised extension-set Transformations applied to F0

{∅, {a, b, c}} α(b, zc2) ◦ α(a, zb2) ◦ α̂(za2)
{{b}, {a, b, c}} δ({zb1, zb2, z}) ◦ α(a, zc2) ◦ α̂(za2)
{∅, {b}, {a, b, c}} α(a, zc2) ◦ α(a, zb2) ◦ α̂(zb2) ◦ α̂(za2)
{∅, {a, b}, {a, c}} α(b, c) ◦ α̂(zb1) ◦ α̂(zc1) ◦ α̂(zb2) ◦ α̂(zc2) ◦

α(c, za2) ◦ α(b, za2)
{∅, {a, c}, {a, b, c}} α(a, zc2) ◦ α(b, za2) ◦ α̂(zb2) ◦ α̂(za2)
{∅, {b}, {a, c}, {a, b, c}} α(a, zc2) ◦ α̂(zb2) ◦ α̂(za2)
{∅, {a, b}, {a, c}, {a, b, c}} α(c, za2) ◦ α(b, za2) ◦ α̂(zc2) ◦ α̂(zb2)
{∅, {b}, {c}, {a, b, c}} µ({zb2, zc2, z}, z) ◦ α(a, zb2) ◦ α̂(za2)
{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} µ({za2, zc2, z}, z) ◦ µ({za2, zb2, z}, z)
{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},
{a, b, c}}

α̂(zc2) ◦ α̂(zb2) ◦ α̂(za2)

Table 3: Results of Case Study 3. With regard to the extension-sets we again only list
representatives of their respective isomorphism classes.

6.3 The Cycle Hub Framework

We will now examine another base framework which, due to its complexity, is no
longer suitable for an exhaustive search covering all possible attack configurations.
Its construction draws inspiration from Case Study 3, particularly, from the merge
operator (Transformation 2) applied to multiple odd cycles. First however we want
to name a construction that we have already encountered several times so far.

Definition 28 (Cycle Hub Framework). For a given set of arguments A, the cycle hub
framework F△

A is constructed as follows. We start with the framework F = (A,R)
where A = A,R = ∅.

1. For each a ∈ A, add the arguments za, z
′
a to F , where za, z

′
a /∈ A are new

arguments, and add the attacks a → za, za → z′a, z′a → a. This creates the odd
cycles scenario from Figure 22 for an arbitrary set of arguments A.

2. Introduce a new argument z0 /∈ A, and apply µ({z′x | x ∈ A}, z0) to F .

Example 27. The left framework of Figure 23 shows the cycle hub framework F△
A

constructed for the three arguments A = {a, b, c}.

Proposition 28. For a finite A ⊂ A, ud(F△
A ) = 2A \A.

Proof. For any S ⊊ A, (F△
A )S consists of a number of interlinked odd cycles around

the central argument z0, and there are obviously no admissible subsets. For S = A,
(F△

A )S consists only of the unchallenged z0 and is thus not vacuous.

With respect to ud and for a given S ∈ Σud (from Conjecture 1), S 7→ F△⋃
S is

not a base framework since
⋃

S is missing from its extension-set, but we can easily
complete the construction and turn it into a base framework for ud.
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Definition 29 (Cycle Hub Base Framework). Given an extension-set S ∈ Σud (from
Conjecture 1), the cycle hub base framework is obtained as follows.

1. Construct F = (A,R) = F△⋃
S.

2. Create a new self-attacking argument z1 /∈ A and connect it to F via z1 → z0.

We will refer to the resulting framework as F ud∗
S .

Example 28. The right framework in Figure 23 shows F ud∗
S constructed for an

extension-set consisting of the three arguments a, b, c.

a

b

c

z0

za zb

zc

a

b

c

z1z0

za

zb

zc

Figure 23: The frameworks F△
A and F ud∗

S , for A = {a, b, c} =
⋃
S.

The construction S 7→ F ud∗
S is indeed a base framework.

Proposition 29. For any S ∈ Σud (from Conjecture 1), we have ud(F ud∗
S ) = 2(

⋃
S).

Proof. Let S ∈ 2(
⋃

S). If S ⊊
⋃

S, (F ud∗
S )S consists of a number of interlinked odd

cycles around the central argument z0, attacked by the self-attacking z1, and there
are obviously no admissible subsets. If S =

⋃
S, only z0, z1 remain in the reduct, of

which again no subset is admissible.

We would like to investigate the expressiveness of F ud∗
S as a base framework in

a similar manner as we did in the previous case studies. For the three-argument
scenario we considered before, F ud∗

S contains eight arguments and 11 attacks; this
yields 28

2−11−3 − 1 ≈ 1015 possibilities to add further attacks, making it unfeasible
to compute each single scenario. We resort to a randomized approach, in the hope
that the relevant constructions are scattered densely enough across the search space.

Case Study 4. We apply attacks randomly to F ud∗
S and compute the resulting

extension-set under undisputed semantics, collecting any realisations that we have
not previously encountered in Case Studies 1, 2, and 3.

Result. Five additional realisation schemes have been discovered; representatives
of their respective isomorphism classes are listed in Table 4. All in all, 40 different
isomorphism classes were realised, including all realisations from the previous case
studies, making this approach the one with the highest expressiveness so far.
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Realised extension-set Attacks, augmenting F ud∗
S

{∅,{a},{a, c},{b, c},{a, b, c}} zc → za, zc → c, zc → b, zb → zc, za → zb,
za → c, za → b, za → a, z0 → z0, b→ za

{∅,{a},{b},{b, c},{a, b, c}} za → za, z0 → z1, z1 → c, z1 → a, c→ z0,
b→ zc

{∅,{a},{b},{c},{a, b},{a, b, c}} zc → zc, zc → b, zb → a, za → zb, za → z1,
za → c, z0 → z1, z1 → c, z1 → a, c→ za,
a→ z0

{∅,{a},{a, b},{a, c},{b, c},{a, b, c}} zc → c, zc → b, zc → a, zb → c, zb → b,
zb → a, za → zc, za → zb, c→ za, b→ za,
a→ zc, a→ zb

{∅,{a},{b},{a, b},{a, c},{b, c},
{a, b, c}}

zc → za, za → c, za → b, za → a, b→ za

Table 4: Results from Case Study 4, showing only representatives of their respective
isomorphism classes.

6.4 Summary of Constructions

In Subsections 6.1, 6.2, and 6.3 we attempted to derive construction methods from
basic considerations; although our case studies were always limited to the concrete
case of three-argument extension sets, the intention each time was to discover a
systematic that also allows generalisations to arbitrary extension-sets.

Together, Tables 2, 3, and 4 summarise the construction recipes for three-argument
undisputed extension-sets that we have discovered so far. However, there are still
extension-sets in Σud (from Conjecture 1) that cannot be realised by our construction
methods; for some of these, we can give concrete witnessing frameworks that prove
their realisability. We do so in Table 5.

Extension-set Framework
{∅,{a},{b},{c},{a, b, c}} ({a, b, c, z1, z2, z3, z4, z5},

{(z5, z3), (z5, b), (z5, z2), (a, z5), (a, z3), (z4, z5),
(z4, z3), (z4, z2), (z3, a), (z3, b), (b, z4), (z2, b),
(z2, c), (z1, a), (z1, z1), (z1, c), (c, z5), (c, z2)})

{∅,{a},{b},{a, b},{a, c},
{b, c}}

({a, b, c, z1, z2, z3, z4},
{(z4, b), (z4, z2), (a, z4), (z3, a), (z3, c), (z3, z2),
(b, z3), (c, z1), (z2, a), (z2, b), (z2, c), (z1, z4),
(z1, z2)})

{∅,{a},{b},{a, c},{b, c},
{a, b, c}}

({a, b, c, z1, z2, z3, z4},
{(z4, b), (z4, c), (a, z4), (z3, z4), (z3, z1), (b, z1),
(z2, a), (z2, b), (z2, z2), (c, z3), (z1, a), (z1, c)})

Table 5: Witnessing frameworks of some undisputed three-argument extension-sets
that were not realised by the constructions from Sections 6.1, 6.2, and 6.3.
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Finally, we list representatives of all three-argument extension-sets from Σud for
which we do not have a realisation yet, in the open question raised below.

Open Question 1. Are any of the following extension-sets realisable by undisputed
semantics, and what are their witnessing frameworks?

{{a, b}, {a, c}, {a, b, c}},
{{a}, {b}, {a, b}, {a, c}},
{∅, {a, b}, {a, c}, {b, c}},
{{a}, {b}, {c}, {a, b}, {a, c}},
{∅, {a}, {a, b}, {a, c}, {b, c}},
{∅, {a, b}, {a, c}, {b, c}, {a, b, c}}.

6.5 Base Frameworks That Separate Extensions

So far we have used fairly generic base frameworks that produced the maximal set
of extensions 2(

⋃
S) for a given input extension-set S. In the classical approach, by

contrast, the base frameworks already employ strategies for separating extensions
(cf. Definition 21 and Proposition 16). Similarly for the non-admissible case, we
would like to incorporate our insights from Propositions 19, 20, and 21 into the
construction of base frameworks, in the hope that this will result in a less complex
filtering task and a broader range of realisable extension-sets. For the undisputed
semantics then, we are presented with the following problem.

Problem 1. Given an extension-set S ∈ Σud (from Conjecture 1), construct a base
framework S 7→ F ∈ FA with respect to ud and Σud, so that for two extensions
X,Y ∈ S where X ∪ Y /∈ S, and in the absence of evident conflict between X and Y ,
F features the following:

1. There need to be undefended attacks on X and Y (Proposition 20);

2. X+ and Y + need to attack a non-empty S ∈ adm(FX∪Y ) (Proposition 21).

In the above problem description, we consider only evidently non-conflicting sets
since evident conflict can already be modelled with one-sided or mutual attacks; in
this case, Propositions 20 and 21 do not apply any more. We further require that any
construction method that intends to realise arbitrary undisputed extension-sets also
respects the following.

Proposition 30 ([Thi23]). If F ∈ FA contains no odd cycles, then ud(F ) = pr(F ).

All of our proposed base frameworks for undisputed semantics (Propositions 26
and 27, and also Definition 29) indeed contain odd cycles. They all fulfil the first
requirement of Problem 1, but since they make no effort to separate extensions,
they do not fulfil the second; in the case studies we conducted, the realisation of
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the second requirement (Proposition 21) has always been a mere by-product of the
subsequently applied filtering. Let us therefore entertain a somewhat naive, but
straight-forward construction idea that incorporates separation mechanisms as a
design principle. We should say upfront that the following algorithm is not able to
produce adequate results in the general case, but at least highlights a characteristic
problem one is confronted with when attempting to devise construction algorithms
for non-admissible semantics.

Algorithm 1 Naively attempt to realise an undisputed extension-set.

Input: A set of sets S ⊆ 2A.
Output: Construct(S).

1: function CONSTRUCT(S ⊆ 2A)
2: let A = ∅,R = ∅. ▷ Start with an empty framework.
3: let Pext = {(X,Y ) ∈ S× S | X ∪ Y /∈ S and X,Y are not in evident conflict}.
4: for all C ∈ Clusters(Pext) do ▷ Each cluster is a set of arguments.
5: for all a ∈ C do
6: let a1, a2 ∈ A \ A. ▷ Construct an odd cycle for a.
7: A ← A∪ {a, a1, a2}.
8: R ← R∪ {(a, a1), (a1, a2), (a2, a)}.
9: end for

10: let zC ∈ A \ A. ▷ Merge the cycles.
11: F ← µ({a2 | a ∈ C}, zC).
12: end for
13: let Parg = {(a, b) ∈

⋃
S×

⋃
S | ∀S ∈ S : {a, b} ⊈ S}.

14: for all (a, b) ∈ Parg do ▷ Add attacks between conflicting arguments.
15: R ← R∪ {(a, b), (b, a)}.
16: end for
17: return (A,R).
18: end function
19: function CLUSTERS(Pext ⊆ 2A × 2A)
20: let S = {X ∪ Y | (X,Y ) ∈ Pext}.
21: loop ▷ Combine sets that have common arguments.
22: if ∃S1, S2 ∈ S : (S1 ̸= S2 ∧ S1 ∩ S2 ̸= ∅) then
23: S ← (S \ {S1, S2}) ∪ {S1 ∪ S2}.
24: else
25: return S.
26: end if
27: end loop
28: end function

The interlinked odd cycles that we construct above are those of Definition 28.
While Proposition 21 gives us some liberty in deciding the attackers X+, Y + of
the admissible extension of the reduct S ∈ adm(FX∪Y ), we choose to involve the
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maximal amount of arguments for the sake of simplicity. All in all, it would appear
that we have fulfilled the requirements of Problem 1.

Example 29. We apply Algorithm 1 to the extension-set {{a, b}, {b, c}, {a, c, d}}. We
find Pext = {({a, b}, {b, c})} and Parg = {(b, d)}, and construct the framework of
Figure 24. The result contains the unwanted argument b1 in one of its extensions.

a

b

c

d z

a1

b1

c1

Figure 24: The result (F ) of applying Algorithm 1 to the given extension-set
{{a, b}, {b, c}, {a, c, d}} produces ud(F ) = {{b}, {a, b}, {b, c}, {a, c, d, b1}}.

Observation 4. It seems that combining the pattern of interlinked odd cycles with
mutual attacks of evidently conflicting arguments has created some sort of an a priori
unforeseen interference between both concepts, causing the auxiliary argument b1 to
emerge in an extension. This is indeed a typical instance of the difficulties that arise
when one tries to construct frameworks that are supposed to realise non-admissible
semantics from basic principles—it may well be possible to correct this particular
problem a posteriori, e.g., by including additional structures that somehow suppress
b1 in the extension-set, but it is not clear that we actually need to do so until we have
constructed our attempt at the solution and computed its outcome; and then it is not
clear what the actual remedy would have to look like. Of course, any algorithmic
treatment would need to have its outcome checked and possibly corrected as well,
until we either arrive at an acceptable solution, or exhaust our possibilities. This
approach then rather resembles a random testing of possibilities than a purposeful
construction.

We leave the problem alone for the time being, but would like to remark that the
concept of a base framework may still have some merit even in the non-admissible
case. In the classical cases that we have explored, we have always found that a base
framework laid the foundation for the design, which then had to be further refined.
In this sense, the construction of the base framework was considerably less complex
than the construction of the entire solution; if the situation behaves analogously for
the non-admissible case, then the solution to Problem 1 could be a stepping stone
on the way to the complete solution.

Open Question 2. For S ∈ Σud, is there a general solution to Problem 1 that does
not involve the realisation of S in its entirety?
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6.6 A General Solution for a Special Case

The final idea that we present in this section is a construction that is applicable to a
wide range of non-admissible semantics, namely undisputed, strongly undisputed
and weakly preferred semantics; its downside is that it works only for a limited set
of cases, which are characterised as follows.

Definition 30. A set of sets S ⊆ 2A is uniquely indexed if it is non-empty, and

∀S ∈ S : ∃a ∈ S : ∀S′ ∈ S :
(
a ∈ S′ ⇐⇒ S = S′) .

For every such S and a, we say that a is a unique index of S.

Neither admissible nor weakly admissible semantics can realise uniquely indexed
extension-sets.

Corollary 3. If S ⊆ 2A is uniquely indexed, then ∅ /∈ S.

We can show however that uniquely indexed extension-sets exhibit the necessary
required properties to be realised under ud, sud, and wpr.

Proposition 31. Every uniquely indexed S ⊆ 2A is incomparable.

Proof. The unique indices of any S1, S2 ∈ S prohibit S1 ⊆ S2 if S1 ̸= S2.

Proposition 32. No uniquely indexed S ⊆ 2A is disjointly supported.

Proof. If S = {S}, then S ̸= ∅ and
⋂
S = S ̸= ∅. Otherwise, every two sets S1, S2 ∈ S

(S1 ̸= S2) are in evident conflict because of the unique indices they contain.

Uniquely indexed extension-sets are then realised under undisputed, strongly
undisputed and weakly preferred semantics by Algorithm 2. We call the resulting
framework the canonical uniquely indexed framework.

Example 30. Figure 25 shows the resulting construction of Algorithm 2, applied to
the input S = {{a, d}, {b, d, e}, {c, f}}. The unique indices are a, b, and c.

Finally we show that the construction indeed produces the promised results.

Proposition 33. For any uniquely indexed S ⊆ 2A, let F be the canonical uniquely
indexed framework. We have S = ud(F ) = sud(F ) = wpr(F ).

Proof. Let S = {S1, . . . , Sn}, and let si be a unique index of each Si. We need to
prove both of the following inclusions.

• “⊆”: For any Si, no indices si remain in the reduct FSi , and the odd cycles
are either completely eliminated because they contain an argument s ∈ Si and
are thus also attacked by si, or they are left intact and contain no non-empty,
admissible subset; so we have Si ∈ ud(F ). The odd cycles can not contain an
undisputed subset either, so we have Si ∈ sud(F ) as well. Lastly, none of the
remaining odd cycles attack any arguments of Si in F , so Si ∈ wadm(F ).
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Algorithm 2 Realise uniquely indexed extension-sets.

Input: A uniquely indexed S = {S1, . . . , Sn} ⊆ 2A (n ≥ 1).
1: let si be a unique index of Si for i ∈ {1, . . . , n}.
2: let S∗

i = Si \ {si} for i ∈ {1, . . . , n}.
3: let A = {s1, . . . , sn},R = {(si, sj) | i, j ∈ {1, . . . , n}, i ̸= j}.
4: for all a ∈

⋃
i S

∗
i do ▷ Construct cycles.

5: let za1 , z
a
2 ∈ A \ A.

6: A ← A∪ {za1 , za2}.
7: R ← R∪ {(za1 , a), (a, za2), (za2 , za1)}.
8: end for
9: for all i ∈ {1, . . . , n} do ▷ Connect the cycles with the unique indices.

10: for all a ∈ S∗
i do

11: R ← R∪ {(si, za1)}.
12: end for
13: end for
Output: (A,R).

a

b

c

d

e

f

zf1

zf2

ze1

ze2

zd1

zd2

Figure 25: The canonical uniquely indexed framework, constructed for the set of sets
S = {{a, d}, {b, d, e}, {c, f}}.
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• “⊇”: Every S ∈ ud(F ) contains exactly one index si: if it contained none, then
one of the si would be invariably part of the admissible extensions of reduct
with respect to S, since the si are not attacked from any other structures in
F ; S can not contain more than one si however, since that would introduce a
conflict. Now consider the odd cycles that are not attacked by si: none of the
arguments can be included in S, because the resulting reduct would contain
non-empty admissible sets. In fact, the only possibility for a vacuous reduct
is when all arguments are included in S which are contained in cycles that
are attacked by si. Because of adm(FS) ⊆ ud(FS), we can make an analogous
argument for sud. Going further, the indices are uniquely included in each
S ∈ wadm(F ) because they are individually admissible, and their attacks break
the corresponding odd cycles, making their contained arguments eligible for
inclusion in S. Proposition 31 then allows the weakly preferred extensions to
be realised.
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7 Summary and Conclusion

We set out to explore the expressive power of various non-admissible semantics, and
in doing so, we focused on weakly admissible, weakly preferred, undisputed, and
strongly undisputed semantics. Comparing the signatures of weakly admissible
and weakly preferred semantics to their classical counterparts, we found that, while
they are not necessarily conflict-sensitive, they still retain the properties of non-
emptiness (respectively, inclusion of the empty set) and, in the case of the weakly
preferred semantics, incomparability. We then introduced the notion of disjointly
supported extension-sets and showed that they are unrealisable by the undisputed
semantics. We conjectured a characterisation of the signatures of these semantics,
which can be proved if construction methods can be specified that realise extension-
sets under the respective semantics.

In the search for such novel construction methods we orientated ourselves on the
construction methods used in the classical cases. We identified four key features
of classical constructions: the separation of extensions (i.e., the circumstance that
the union of two extensions is not itself an extension); the suppression of auxiliary
arguments introduced specifically for the construction so that they do not appear in
the extensions; the presence of base frameworks; and the elimination of unwanted
extensions as a result of a filter.

While transferring these features to non-admissible cases, we found that different
mechanisms for separating extensions were at work than in the classical scenarios,
where the separation of extensions is always a consequence of evident conflict. We
formalised these mechanisms and derived some necessary constructive properties
of realising frameworks. We applied combinations of base frameworks and filters to
examples, where we found that, while the combination of these concepts appears to
have great expressive power, the resulting constructions themselves did not appear
to be particularly comprehensible.

In order to gain an understanding of possible construction patterns that realise
non-admissible extension-sets, we conducted a number of case studies that explored
approaches of varying complexity; but even the large amount of constructions we
obtained as a result did not appear to provide us with a comprehensive design idea,
let alone a blueprint for a generic construction algorithm—we may marvel at the
ingenuity of concrete realisations but fail to extract an underlying design principle.

In fact, at this point we are unable to specify a comprehensible construction
method that is able to create base frameworks which separate evidently non-
conflicting extensions under non-admissible semantics, something that we argued
should be a helpful and less complex stepping stone towards a general solution to
the construction problem. At least, however, we were able to present a solution for
the special case of uniquely indexed extension-sets, which proved to be applicable
to undisputed, strongly undisputed, and weakly preferred semantics at the same
time.
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Related Work and Future Research We already mentioned the principle-based
approach of Van Der Torre and Vesic [vdTV17] that evaluates semantics according
to certain principles that they may satisfy; these principles typically relate structural
features of the framework to properties of the extension-set (the exceptions being the
principles of I-maximality,12 tightness, conflict-sensitivity, and com-closure, which
we also considered), while we are only interested in properties of the extension-
set itself. We also mentioned the work of Dvořák and Woltran [DW11] as well as
Dvořák and Spanring [DS17], who compare the expressiveness of semantics in terms
of translatability of frameworks, but do not characterise semantics based on their
signatures.

Dyrkolbotn [Dyr14] constructs frameworks under labelling-based semantics with
the help of auxiliary arguments and shows that, for the original arguments, arbitrary
labellings can be realised under preferred and semi-stable13 semantics (this does not
contradict the results of Dunne et al. [DDLW15] that we build upon, since they also
take into account the acceptability status of auxiliary arguments). Pührer [Püh15]
generalises the formalism from argumentation frameworks to abstract dialectical
frameworks14 and gives realisations of three-valued interpretations under certain
classical semantics. Linsbichler, Pührer, and Strass [LPS16] devise an algorithm that
realises knowledge bases under a number of formalisms and semantics; so far, their
implementation as well has been limited to several classical semantics. The question
of expressiveness is also, in practical applications, typically linked to computational
complexity; a representation is of little use if certain “canonical” problems, such as
existence, credulous and sceptical acceptance, and verification [Dun22] cannot be
efficiently computed [Str15, Dun22].

To the author’s knowledge, no attempt in the way of the approach of Dunne et al.
[DDLW15] to characterise non-admissible semantics in terms of their signatures has
been carried out before. Our conjectured characterisation of undisputed extension-
sets as being non-empty and not disjointly supported was prompted by our case
studies, which hinted at possible non-realisable patterns; it should be instructive to
conduct analogous studies for other non-admissible semantics and see whether the
results support or refute our conjecture. Perhaps an attempt to adapt the framework
by Linsbichler, Pührer, and Strass [LPS16] to deal with semantics that are of interest
to us may shed more light on the fundamental reasons of the peculiar resistance that
non-admissible semantics put up against their systematic realisation.

12This term is synonymous to what we called incomparability.
13Semi-stable labellings [CG09] are complete labellings that minimise the set of undecided arguments.
14In an abstract dialectical framework (ADF) [BW10], the attack relation is replaced and generalised

by an acceptance condition, i.e., a propositional formula for each argument, which expresses the
argument’s acceptance in terms other arguments’ state of acceptance.
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