
Faculty of Mathematics and Computer Science Artificial Intelligence Group

Implementation of Semiring-based
Weighted Argumentation Frameworks

using Answer Set Programming

Bachelor’s Thesis
in partial fulfillment of the requirements for

the degree of Bachelor of Science (B.Sc.)
in Informatik

submitted by
Dominik Stummer

First examiner: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Advisor: Lars Bengel
Artificial Intelligence Group

Statement

Ich erkläre, dass ich die Bachelorarbeit selbstständig und ohne unzulässige Inan-
spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen und
Hilfsmittel verwendet und die aus diesen wörtlich oder sinngemäß entnommenen Stel-
len als solche kenntlich gemacht. Die Versicherung selbstständiger Arbeit gilt auch
für enthaltene Zeichnungen, Skizzen oder graphische Darstellungen. Die Bachelorar-
beit wurde bisher in gleicher oder ähnlicher Form weder derselben noch einer anderen
Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Mit der Abgabe der elektro-
nischen Fassung der endgültigen Version der Bachelorarbeit nehme ich zur Kenntnis,
dass diese mit Hilfe eines Plagiatserkennungsdienstes auf enthaltene Plagiate geprüft
werden kann und ausschließlich für Prüfungszwecke gespeichert wird.

Yes No

I agree to have this thesis published in the library. □ □

I agree to have this thesis published on the webpage of
the artificial intelligence group. □ □

The thesis text is available under a Creative Commons
License (CC BY-SA 4.0). □ □

The source code is available under a GNU General Public
License (GPLv3). □ □

The collected data is available under a Creative Commons
License (CC BY-SA 4.0). □ □

. .
(Place, Date) (Signature)

ii

iPad von Dominik

iPad von Dominik

iPad von Dominik

iPad von Dominik

Zusammenfassung

Abstrakte Argumentationsgraphen bieten eine Methodik zur Modellierung und
Analyse von Argumenten und deren Beziehungen zueinander. Die grundlegende Struk-
tur eines abstrakten Argumentationsgraphen wird durch einen gerichteten Graphen
dargestellt, wobei die Knoten des Graphen die Argumente repräsentieren und die
gerichteten Kanten die Attacken zwischen den Argumenten darstellen. Das Konzept
der abstrakten Argumentationsgraphen wird kontinuierlich durch neue Formalismen
erweitert, beispielsweise durch gewichtete Argumentationsgraphen mit gewichteten
Attacken. Durch das Gewichten der Attacken können wir deren Stärke repräsentie-
ren und somit den in einem Argumentationsgraphen enthaltenen Informationsgehalt
erhöhen. Die von Bistarelli et al. vorgestellten Semiring-basierten gewichteten Argu-
mentationsgraphen ermöglichen eine Betrachtung des Gesamtgewichts von Angriffen,
was zu einer besonderen Definition der Verteidigung führt. In dieser Bachelorarbeit
präsentieren wir einen ersten Ansatz zur Implementierung von Semiring-basierten ge-
wichteten Argumentationsgraphen unter Verwendung von Answer-Set-Programming,
einer Form der logischen Programmierung und evaluieren die ASP-Implementierung
unter der Betrachtung verschiedener Problemtypen.

Abstract

Abstract argumentation frameworks provide a methodology for modeling and ana-
lyzing arguments and their relationships to each other. The basic structure of an
abstract argumentation framework is represented by a directed graph, where the
nodes of the graph represent the arguments and the directed edges represent the at-
tacks between the arguments. The concept of abstract argumentation frameworks is
continuously being expanded through new formalisms, for instance through weighted
argumentation frameworks with weights on attacks. By assigning weights to attacks,
we can represent their strength, thus enhancing the information contained within an
argumentation framework. The semiring-based weighted argumentation frameworks
from Bistarelli et al. allow for a composition of weights of attacks, leading to a
unique notion of defence. In this bachelor’s thesis, we present an initial approach
to implement semiring-based weighted argumentation frameworks using answer set
programming, a form of logical programming, and subsequently evaluate the ASP-
implementation considering various problem types.

iii

Contents
1 Introduction 1

2 Abstract Argumentation Frameworks 4
2.1 Core Concepts . 4
2.2 Semantics for Abstract Argumentation Frameworks 5

3 Weighted Argumentation Frameworks 7
3.1 Core Concepts . 7
3.2 Semantics for Weighted Argumentation Frameworks 10

4 Answer Set Programming 16

5 Related Work 19
5.1 Various Approaches for Weighted Argumentation Frameworks 19
5.2 Aspartix . 20
5.3 ConArg . 22

6 ASP Encodings for Weighted Argumentation Frameworks 24
6.1 Modeling Weighted Argumentation Frameworks 24
6.2 Conflict-freeness . 25
6.3 Admissibility . 25
6.4 Complete Semantics . 27
6.5 Stable Semantics . 28
6.6 Discussion . 28

7 Evaluation of the ASP Implementation 29
7.1 Generation of Test Cases . 29
7.2 Experimental Design . 29
7.3 Results . 31

7.3.1 Impact of the Model . 31
7.3.2 Impact of the Problem Type 36
7.3.3 Impact of the Relaxations . 38
7.3.4 Impact of the Implementation 42

7.4 Discussion . 47

8 Conclusion 48

iv

1 Introduction
Argumentation Theory is an interdisciplinary research field that deals with the anal-
ysis of arguments and their characteristics. The foundations of this field extend back
to 500 BC and were influenced by philosophers such as Zeno of Elea, Plato, Socrates
and Aristotle [39]. In the area of artificial intelligence the concept of abstract ar-
gumentation frameworks (AAFs), introduced by Dung [18] in 1995, is well-studied
and applied in various areas such as legal reasoning [36], machine learning [35] and
multi-agent system research [12].

An abstract argumentation framework provides a formal representation of argu-
ments and their relationships to each other, thereby making them computable, which
is particularly helpful for complex argumentation situations. The basic structure of
an AAF is represented by a directed graph, where the nodes of the graph represent
the arguments and the directed edges represent the attacks between the arguments.
Once an argumentation situation has been formalized as an AAF, important char-
acteristics and relationships between the arguments can be examined. In the area
of abstract argumentation, the primary focus is on finding sets of arguments that
are acceptable under various semantics (admissible, complete, grounded, preferred,
stable).

Abstract argumentation frameworks have been extended by a variety of variants
to increase their functionality and expressiveness. Bipolar argumentation frameworks
(BAFs) [14] for example provide a support relation in addition to the attack rela-
tion, while extended argumentation frameworks (EAFs) [34] allow attacks on attacks.
Preference-based argumentation frameworks (PAFs) [2] and value-based argumenta-
tion frameworks(VAFs) [3] both extend AAFs by modeling preferences. In PAFs, this
is done through the use of a preference relation between the arguments and in VAFs
by assigning values to the arguments and preferring arguments based on a hierarchy
of these values.

In this bachelor's thesis, the focus lies on weighted argumentation frameworks
(WAFs) [10], with the capability to weight attacks by assigning a numerical value
to each attack. By weighting attacks instead of arguments, the relations between
arguments can be represented in a more nuanced and detailed way [10]. Figure 1
demonstrates an example of a WAF with two arguments attacking each other. This

a b
2

8

Figure 1: Example of a WAF with two arguments.

could be an argumentation between two hikers with the arguments a: “I am tired, we
should rest.” and b: “It is getting dark, we should move on.” If only the arguments
a and b are present, they would be both acceptable in traditional AAFs. In a WAF

1

on the other hand, rational agents would weight the attack from b to a stronger,
and therefore the argument b emerges as the only acceptable argument. Addition-
ally, the weighting of attacks offers the possibility to attack multiple arguments with
different weights from one argument. There exist several variants of WAFs that are
based on AAFs and differ in their notion of defence or allow for relaxations of cer-
tain properties[10]. In this bachelor's thesis, we focus on the semiring-based weighted
argumentation frameworks proposed by Bistarelli et al. [7], which feature a unique
notion of defence and the ability to perform relaxation on the notion of defence, as
well as allowing for inconsistency within an extension.

Since 2015, the International Competition on Computational Models of Argumen-
tation (ICCMA) [38] has been held every two years, in which different programs and
software systems compete in abstract argumentation reasoning. A regular contender
in this competition is Aspartix [22], a software system that utilizes answer set pro-
gramming (ASP), a form of logic programming. Answer set programming allows for
the semantics of an AAF to be declared in the form of rules and then solved automat-
ically with an ASP solver. Clingo [26] is an example of such an ASP system, which is
continuously being developed and can efficiently solve complex reasoning problems.
The semiring-based WAFs from Bistarelli et al. [7] have already been implemented
in ConArg [8]. However, there is currently no such implementation using ASP.

In this bachelor's thesis, we present an initial approach to implement semiring-
based weighted argumentation frameworks using answer set programming. We intro-
duce ASP-encodings for conflict-free sets, admissible sets, complete semantics, and
stable semantics, which are compatible with the ASP system Clingo. Subsequently,
we conduct an evaluation of the ASP-implementation, in which we address the fol-
lowing research questions:

Research Question 1: Impact of the Model
When utilizing different models for generating weighted argumentation frame-

works, how do the instances behave in terms of acceptability under various semantics
and problem types, and what is the corresponding runtime performance of the ASP-
implementation?

Research Question 2: Impact of the Problem Type
To what extent do different problem types affect the runtime performance of the

ASP-implementation?

Research Question 3: Impact of the Relaxations
What impact do relaxations of the properties conflict-freeness and the notion of

defence have when analyzing weighted argumentation frameworks for acceptability,
and what impact do the relaxations have on the runtime performance of the ASP-
implementation?

Research Question 4: Impact of the Implementation
When examining weighted argumentation frameworks for acceptability under var-

ious problem types, how does the runtime performance of the ASP-implementation
compare to that of other implementations?

2

In this work, we begin by presenting Dung's abstract argumentation frameworks
[18], which also form the basis for the semiring-based weighted argumentation frame-
works from Bistarelli et al. [7] presented in Section 3. We will introduce the core
concepts and semantics of WAFs and also showcase the unique properties of this
type of WAFs with several examples. In Section 4, we provide a brief introduction
to answer set programming and explain its functionality in more detail. Section 5
is dedicated to related work, where we explore how the semiring-based approach for
WAFs differs from other approaches in terms of the notion of defence, and addition-
ally, we will examine the software systems ASPARTIX and ConArg more closely.
In Section 6, we present the developed ASP-encodings for WAFs, which are com-
patible with the ASP system Clingo. In Section 7, we provide an evaluation of the
ASP-implementation in which we address the research questions presented. Finally,
in Section 8 we provide a summarizing conclusion and discuss directions for future
research.

3

2 Abstract Argumentation Frameworks
In this section we present Dung's abstract argumentation frameworks (AAFs) [18]
and associated definitions. The primary focus of abstract argumentation is to iden-
tify sets of arguments that are acceptable under various semantics. Key concepts
in this context include the notion of defence and conflict-freeness, which serve as
the foundational criteria for defining admissible sets of arguments. By imposing
constraints on admissible sets, various semantics can be defined and corresponding
extensions can be calculated. The definitions that follow in this section represent the
concepts which where presented by Dung in his original paper [18].

2.1 Core Concepts
Abstract argumentation frameworks (AAFs) [18] allow for a formal representation
of arguments and the attack relations between those arguments, thereby enabling
an analysis of these AAFs for acceptability. Through the formal and robust repre-
sentation of Dung’s AAFs, we can examine complex argumentation situations under
various semantics. The definition of an abstract argumentation framework is as fol-
lows:

Definition 1 (Abstract argumentation framework). An abstract argumen-
tation framework (AAF) is a pair ⟨A, R⟩ consisting of a set of arguments A and
a binary relation R ⊆ A × A, called attack relation.

For a given AAF G = ⟨A, R⟩1, we denote ∀ ai, aj ∈ A, R(ai, aj) means that ai

attacks aj . The formal definition of AAFs allows us to represent them as a directed
graph as shown in Example 1.

Example 1 Let G1 = ⟨A, R⟩ be an AAF, with the arguments A = {a, b, c, d} and the
attacks R = {(a, b), (b, d), (c, d), (d, c)}. Figure 2 shows the AAF as a directed graph,
with the arguments as nodes and the attacks as directed edges.

a b

c d

Figure 2: Example of an AAF G1.

1We denote G for AAFs, as we use F for WAFs.

4

A prerequisite for acceptable sets of arguments is conflict-freeness, which means
that the arguments within a set do not attack each other and therefore are internally
consistent. The definition of conflict-free sets is as follows:

Definition 2 (Conflict-free sets). A set B ⊆ A is conflict-free iff no two argu-
ments a and b in B exist such that a attacks b.

Another crucial concept for the acceptability arguments is the notion of defence,
which describes whether a set defends an argument by collectively defending the
argument against all attacks.

Definition 3 (Defence). An argument b is defended by a set B ⊆ A (or B defends
b) iff for any argument a ∈ A, if R(a, b) then there exists an argument c ∈ B such
that R(c, a).

With the notion of defence, we can examine in Example 2, if an argument is
defended by a set.

Example 2 Consider the AAF G1 from Figure 2. If we observe the argument d, we
see that d defends itself against c but not against b. We can investigate whether d
can be successfully defended together with other arguments. Since a attacks b, the set
{a, d} successfully defends against the arguments b and c.

2.2 Semantics for Abstract Argumentation Frameworks
Since we have defined the core concepts of AAFs, we can now define semantics for
AAFs, which offer the possibility to identify sets of arguments that are acceptable
under the respective semantics. We denote σ to the semantics, where σ ∈ {adm, com,
grd, prf , stb} corresponds respectively to admissible, complete, grounded, preferred
and stable semantics. For an AAF G = ⟨A, R⟩, we denote with σ(G) the set of
σ-extensions of G.

First, we define admissible sets, which are considered the fundamental form of
acceptable sets, which can defend themselves against all attacks and are conflict-free.

Definition 4 (Admissible sets). A conflict-free set B ⊆ A is admissible iff each
argument in B is defended by B.

In Example 3, we determine the admissible sets of the AAF from Figure 2.

Example 3 Consider the AAF G1 from Figure 2. For the admissible sets we get
adm(G1) = {∅, {a}, {c}, {a, c}, {a, d}}. If we examine the sets {a, c} and {a, d}, we
see that {a, c} is admissible because a is not attacked and therefore defended and c
defends itself from b. The set {a, d} is admissible, because a defends d from b and d
defends itself from c. The empty set ∅ is always admissible, because it is conflict free
and has no arguments that can be attacked and therefore always satisfies the notion
of defence.

5

We can now define various semantics, which impose constraints on admissible sets.
With these semantics we can calculate subsets of admissible sets, which we refer to
as extensions. Complete extensions are admissible and include all arguments that are
defended by the extension, which according to Dung [18, p. 329] describes a confident
rational agent, who believes in everything he can defend. The grounded extension
represents the minimal complete extension and is always unique. The preferred ex-
tensions are admissible sets, that are maximal with respect to set inclusion. The
stable extensions are admissible and attack all arguments that are not included in
the extension. Therefore stable extensions are able to defeat all arguments that are
outside the extension.

Definition 5 (Semantics for AAFs). Let G = ⟨A, R⟩ be an AAF. A subset of
arguments B ⊆ A is then

• complete, iff it is admissible and each argument which is defended by B is in
B;

• grounded, iff it is complete and minimal w.r.t. set inclusion;

• preferred, iff it is admissible and maximal w.r.t. set inclusion;

• stable, iff it is admissible and for each argument which is not in B, there exists
an argument in B that attacks it.

Since we have defined the semantics for AAFs, we can now examine the AAF from
Figure 2 for acceptability. The respective admissible sets were already examined in
Example 3.

Example 4 Consider the AAF G1 from Figure 2. For the extensions under the
respective semantics we get:

– com(G1) = {{a}, {a, c}, {a, d}}. The sets ∅ and {c} are admissible, but not com-
plete. ∅ is not complete, since a is not attacked, and therefore defended by ∅. {c}
is not complete, since a is not attacked and thus defended by ∅, which is why c is
only complete in combination with a.

– grd(G1) = {{a}}, since {a} is the minimal complete extension.

– prf(G1) = {{a, c}, {a, d}}, since these extensions are the maximal admissible sets.

– stb(G1) = {{a, c}, {a, d}}, since these extensions are admissible and attack all
arguments that are not in the respective extension.

While the examples shown in this section are still relatively simple, the formal
structure of AAFs also enables the examination of large and complex argumentation
situations. The semiring-based WAFs introduced in the following section are expan-
sions of AAFs and allow for a weighting of attack relations with a composition of
weights and the relaxation of the properties conflict-freeness and notion of defence.

6

3 Weighted Argumentation Frameworks
In this section we present the semiring-based weighted argumentation frameworks
(WAFs) from Bistarelli et al. [7] and associated definitions. First, we present the
mathematical structure for these types of WAFs, the c-semiring [5], followed by
the expansion of the definitions known from abstract argumentation frameworks to
account for a weighting of the attacks. Subsequently, we present relaxations for
conflict-free sets and the notion of defence with the parameters α and γ, which leads
to the definitions of αγ-semantics. The definitions in this section were sourced from
the original paper by Bistarelli et al. [7] and from a subsequent paper by Bistarelli
and Taticchi [11].

3.1 Core Concepts
Weighted argumentation frameworks extend AAFs with a weighting of the attacks,
thereby enabling a more nuanced and detailed representation of the relations be-
tween arguments. There are several approaches for weighted argumentation frame-
works [19, 16, 33, 7], which differ in their notion of defence and the possibility to
perform relaxations. In Section 5, we will explore these approaches in more detail.
In this work, we will focus on the semiring-based weighted argumentation frameworks
(WAFs) from Bistarelli et al. [7], which introduce an extended notion of defence and
the possibility to perform relaxations on conflict-freeness and the notion of defence.

The WAFs from Bistarelli et al. [7] are based on the c-semiring [5], an algebraic
structure that provides an operation for composing weights and therefore allows us
to compare the composition of the attacks with the composition of the defences to
determine the acceptability of an argument. The definition of the c-semiring is as
follows:

Definition 6 (c-semirings). A commutative semiring is a tuple S = ⟨S, ⊕, ⊗, ⊥, ⊤⟩
such that S is a set, ⊤, ⊥ ∈ S and ⊕, ⊗ : S × S → S are binary operators making
the triples ⟨S, ⊕, ⊥⟩ and ⟨S, ⊗, ⊤⟩ commutative monoids (semi-groups with identity),
satisfying

(i) ∀s, t, u ∈ S.s ⊗ (t ⊕ u) = (s ⊗ t) ⊕ (s ⊗ u) (distributivity), and

(ii) ∀s ∈ S.s ⊗ ⊥ = ⊥ (annihilator).

If ∀s, t ∈ S. s ⊕ (s ⊗ t) = s, the semiring is said to be absorptive. In short, c-
semirings are defined as commutative and absorptive semirings.

Building upon the c-semiring, we can define semiring-based weighted argumentation
frameworks (WAFs). The instance of the c-semiring, that is applied for WAFs is the
weighted c-semiring: Sweighted = ⟨R+ ∪ {∞}, min, +, ∞, 0⟩.

Definition 7 (WAF). A semiring-based weighted argumentation framework
(WAF) is a quadruple ⟨A, R, W, S⟩, where S is a c-semiring ⟨S, ⊕, ⊗, ⊥, ⊤⟩, A is a

7

set of arguments, R the binary attack-relation on A and W : A × A → S is a binary
function. Given a, b ∈ A and R(a, b), then W (a, b) = s means that a attacks b with
a weight s ∈ S. Moreover, we require that R(a, b) iff W (a, b) > ⊤2.

Since we have defined WAFs, we can now expand the AAF from Figure 2 to a
WAF by assigning weights to the attacks.

Example 5 Let F1 = ⟨A, R, W, S⟩ be a WAF with the arguments A = {a, b, c, d},
the attacks R = {(a, b), (b, d), (c, d), (d, c)}, the weights W (a, b) = 2, W (b, d) = 4,
W (c, d) = 5, W (d, c) = 3 and the weighted c-semiring S = ⟨R+ ∪ {∞}, min, +, ∞, 0⟩.
Figure 3 shows the WAF as a directed graph with the weighted attacks.

a b

c d

2

4

5

3

Figure 3: Example of a WAF F1.

In WAFs, we calculate the sum of the weights of the attacks from one set of argu-
ments to another with w-attacks. For this functionality, we define the

⊗
operator,

which extends the ⊗ operator from S to sets of values.

Definition 8 (w-attack). Given a WAF, F = ⟨A, R, W, S⟩. A set of arguments
B ⊆ A w-attacks a set of arguments D ⊆ A and the weight of such an attack is
k ∈ S, if

W (B, D) =
⊗

b∈B,d∈D

W (b, d) = k.

The definition for w-attacks also allows for a composition of the attacks from
a single argument to a set of arguments and from a set of arguments to a single
argument.

Example 6 When examining the WAF from Figure 3, we find for example that the
total weight of the attack from {b, c} to d is W ({b, c}, d) = 9 and the total weight of
the attack from {a, c} to {b, d} is W ({a, c}, {b, d}) = 7.

We can now define w-conflict-free sets, which have the same characteristic as the
conflict-free sets from Section 2, since no attacks within w-conflict-free sets are al-
lowed.

2In the context of a weighted c-semiring ⊤ represents 0.

8

Definition 9 (w-conflict-free sets). Given a WAF, F = ⟨A, R, W, S⟩. Then a set
B ⊆ A is w-conflict-free iff W (B, B) = ⊤.

By defining the notion of w-defence, which builds upon w-attacks, we can deter-
mine if an argument is defended by a set against an attacking arguments. This is a
fundamental prerequisite for determining acceptable sets of arguments for WAFs.

Definition 10 (w-defence). Given a WAF, F = ⟨A, R, W, S⟩. Then a set B ⊆ A
w-defends b ∈ A iff ∀a ∈ A such that R(a, b), we have that W (a, B∪{b}) ≤ W (B, a).

a b c

d

e

1

2
2

34

7 1

Figure 4: Example of a WAF F2 for basic definitions.

In the Examples 7 and 8, we examine the WAF F2 from Figure 4 for w-defence,
by investigating whether the arguments a or d are w-defended by the set {c, e}.

Example 7 Consider the WAF F2 from Figure 4 with B = {c, e}. By examining if
the argument a is w-defended by B, we get W (b, B∪{a}) = 3+2 = 5 and W (B, {b}) =
4 + 2 = 6. W (b, B ∪ {a}) ≤ W (B, b) is true and thus the argument a is successfully
w-defended by B.

Example 8 Consider the WAF F2 from Figure 4 with B = {c, e}. By examining if
the argument d is w-defended by B against b, we get W (b, B ∪ {d}) = 7 + 3 = 10 and
W (B, {b}) = 4 + 2 = 6. We see, that the weight from the attacking argument is now
higher than the weight of the defence from B, thus the argument d is not w-defended
by B, since W (b, B ∪ {a}) ≤ W (B, b) is false.

WAFs can be relaxed by applying parameters that adjust the notions of w-defence
and w-conflict-freeness to allow for more flexibility in the analysis of acceptable sets.
Practical examples include removing the effect of troll arguments or analyzing prod-
uct reviews in more detail by allowing for inner conflict within an extension [7,
p. 80-83].

9

To allow for inconsistency within an extension, we expand w-conflict-free sets with
the parameter α, to tolerate attacks within w-conflict-free sets up to a given value,
which leads to the definition of α-conflict-free sets.

Definition 11 (α-conflict-free sets). Given a WAF F = ⟨A, R, W, S⟩. Then a
set B ⊆ A is α-conflict-free iff W (B, B) ≤ α.

We can now examine the WAF F2 from Figure 4 for α-conflict-freeness by adjusting
the parameter α to allow for inconsistency within a set.

Example 9 Consider the WAF F2 from Figure 4 with the parameter α = 5 and
B = {a, b, c}. The set B is α-conflict-free, since (W (B, B) = 5) ≤ 5 .

We now define γ-defence, which is a relaxed notion of w-defence through the pa-
rameter γ. This relaxation enables the identification of a broader set of acceptable
arguments.

Definition 12 (γ-defence). Given a WAF F = ⟨A, R, W, S = ⟨S, ⊕, ⊗, ⊥, ⊤⟩⟩ and
γ ∈ S. A subset of arguments B ⊆ A γ -defends b ∈ A iff ∀a ∈ A such that R(a, b)
we have that W (B, a) > ⊤ and W (a, B ∪ {b}) ≤ (W (B, a)) + γ).

We can now examine the WAF F2 from Figure 4 for γ-defence by adjusting the
parameter γ to relax the notion of w-defence.

Example 10 Consider the WAF F2 from Figure 4 with the parameter γ = 5 and
B = {c, e}. By examining the argument d for γ-defence, we get W (b, B ∪ {a}) =
7 + 3 = 10 and W (B, {b}) = 4 + 2 = 6. W (a, B ∪ {b}) ≤ (W (B, a)) + γ) is true, since
γ = 4, and thus the argument d is successfully 4-defended by B.

3.2 Semantics for Weighted Argumentation Frameworks
Building on the core concepts, we can now define semantics for WAFs, which also
offer the possibility of relaxation through the parameters α and γ. We denote σr

to the αγ-semantics, where σr ∈ {αγ-adm, αγ-comC1 , αγ-comC2 , αγ-comC3 , αγ-prf ,
αγ-stb} corresponds respectively to αγ-admissible, αγ-completeC1 , αγ-completeC2 ,
αγ-completeC3 , αγ-preferred and αγ-stable semantics.

We first define αγ-admissible sets, which provide the foundation for examining
arguments for acceptability in WAFs.

Definition 13 (αγ-admissible sets). An α-conflict-free set B ⊆ A is αγ-admissible
iff the arguments in B are γ-defended by B from the arguments in A \ B.

In Example 11, we investigate the WAF from Figure 4, with the focus on examining
the effects of the relaxation parameters α and γ.

10

Example 11 Consider the WAF F2 from Figure 4 with the parameters α = 2, γ = 1
and B = {b, c}. Without relaxations, B would be neither α-conflict-free since c attacks
b nor γ-defended since {b, c} cannot defend against e. Due to the parameter α, the
set B is 2-conflict-free and due to the parameter γ the set B can successfully defend
against e, since W (e, B) = 4 and W (B, e)+γ = 3+1 with the condition for γ-defence
W (e, B) <= W (B, e) + γ. Therefore, the set B is 21-admissible.

For the αγ-complete semantics, there exist several approaches. The first approach,
presented in the original paper from Bistarelli et al. [7], is oriented towards the
classical definition for complete semantics from Dung. In this semantics, although it
is taken into account whether an argument is defended by a set, the weight of the
counterattack from the argument to an attacking argument is not considered. The
definition for αγ-completeC1 semantics is as follows:

Definition 14 (αγ-completeC1 semantics). Given a WAF F = ⟨A, R, W, S⟩,
an αγ-admissible set B ⊆ A is αγ-completeC1 iff each argument b ∈ A that is γ
-defended by B is in B and W (B ∪ {b}, B ∪ {b}) ≤ α.

The second definition for αγ-completeC2 semantics is derived from [11]. The defi-
nition is slightly adjusted, as the relaxation parameters were also considered. In this
definition, an argument no longer needs to be actively defended by B, as an argument
can also defend itself independently against attacking arguments.

Definition 15 (αγ-completeC2 semantics). Given a WAF F = ⟨A, R, W, S⟩, an
αγ-admissible set B ⊆ A is αγ-completeC2 iff each argument b ∈ A such that B∪{b}
is αγ-admissible belongs to B.

The third definition for αγ-complete semantics is similar to Definition 15, but with
the additional constraint that an argument, which is not in B, cannot defend itself
against attacking arguments without B. In this semantics, B is only αγ-complete
when it contains all arguments that are defended by B, with the weight of counter-
attacks from arguments against attacking arguments also taken into account. This
definition also matches the functionality of ConArg [8], introduced in Section 5 and
therefore we will proceed with this definition for the remainder of this work. The
definition for αγ-completeC3 semantics is as follows:

Definition 16 (αγ-completeC3 semantics). Given a WAF F = ⟨A, R, W, S⟩,
an αγ-admissible set B ⊆ A is αγ-completeC3 iff each argument b ∈ A such that
B ∪{b} is w-admissible belongs to B under the condition that for every c ∈ A\B with
W (c, b) ̸= ⊤ we have that W (B, c) ̸= ⊤.

In Example 12, we demonstrate the distinctions between these three types of αγ-
complete semantics by analyzing the WAF from Figure 5.

11

a b c

d e

2 1

34 56

Figure 5: Example of a WAF F3 for αγ-complete semantics.

Example 12 Consider the WAF F3 from Figure 5 with the parameters α = 0, γ = 0.
For the 00-complete extensions, under the respective semantics we get:

– 00-comC1(F3) = {{a}, {a, c}, {a, c, d}}. {a} is 00-completeC1, since a neither 00-
defends d against b nor 00-defends e against c. {a, c} is 00-complete, as the set
does not 00-defend d against b.

– 00-comC2(F3) = {{a, c, d}}. The only 00-completeC2 extension is {a, c, d}. {a} and
{a, c} are not 00-completeC2, since the weight from d to b is taken into account.
However, {a, d} is also not 00-completeC2, since c can defend itself independently
against e without the necessity of {a, d} attacking e.

– 00-comC3(F3) = {{a, d}, {a, c, d}}. With this semantics, {a, d} and {a, c, d} are
both 00-completeC3. {a, d} is 00-completeC3 since c is not attacked by {a, d}.

As shown in Example 12, we see that the αγ-completeC1 semantics does not take
into account the defence weight from individual arguments outside B against at-
tacking arguments and the αγ-completeC2 semantics is too general. With the αγ-
completeC3 semantics, the attack weight of individual arguments outside B against
attacking arguments is considered and all attacking arguments must be attacked by
B to defend an argument outside B.

We now define αγ-preferred semantics, which represent the maximal αγ-admissible
sets with respect to set inclusion.

Definition 17 (αγ-preferred semantics). Given a WAF F = ⟨A, R, W, S⟩, an
αγ-admissible set B ⊆ A is αγ-preferred iff B is maximal (with respect to set
inclusion).

12

a b c

d e

4

1

6

3
2

Figure 6: Example of a WAF F4 for αγ-preferred semantics.

In Example 13, we examine the WAF from Figure 6 under αγ-preferred seman-
tics. This example is particularly interesting since maximal preferred extensions of
different sizes can be found.

Example 13 Consider the WAF F4 from Figure 6 with the parameters α = 0, γ = 0.
For the 00-preferred extensions, we get {a, c} and {c, d, e}. These are the maximal
00-admissible sets with the respect to set inclusion, since {a} ̸⊂ {c, d, e}.

In Example 14, we examine again the WAF from Figure 6 under αγ-preferred
semantics, but this time with a relaxation through the parameter γ.

Example 14 Consider the WAF F4 from Figure 6 with the parameters α = 0, γ = 1.
For the 01-preferred extensions, we get {a, c, e} and {c, d, e}, because {a, c, e} now
successfully 1-defends against c, since W (b, {a, c, e}) = 7 and W ({a, c, e}, b) + γ =
6 + 1 = 7.

As the last semantics dealt with in this work, we define αγ-stable semantics, which
state that an αγ-stable extension must be αγ-completeC3 and additionally all argu-
ments outside of the extensions must be attacked.

Definition 18 (αγ-stable semantics). Given a WAF F = ⟨A, R, W, S⟩, an αγ-
admissible set B ⊆ A is αγ-stable iff for every a ∈ A \ B there is a b ∈ B with
W (b, a) ̸= ⊤ and B ∪ {a} is not αγ-admissible.

In the Examples 15 and 16, we examine the WAF from Figure 7 under αγ-stable
semantics. Without relaxations, the WAF would have no stable extensions. In Ex-
ample 15, we allow for inner conflict through the parameter α. In Example 16, we
relax the notion of w-defence with the parameter γ, which leads to the identification
of another αγ-stable extension.

13

a b

c d

1

2
1

2

3

Figure 7: Example of a WAF F5 for αγ-stable semantics.

Example 15 Consider the WAF F5 from Figure 7 with the parameters α = 1, γ = 0.
For the 10-stable extensions, we get {a, c}, since {a, c} is 1-conflict free, 0-defends
with W ({a, c}, d) = 4 against W (d, {a, c}) = 3 and {a, c} also attacks b.

Example 16 Consider the WAF F5 from Figure 7 with the parameters α = 0, γ = 1.
For the 01-stable extensions, we get {b, c}, since {a, c} is 0-conflict free, 1-defends
with W ({b, c}, d) + γ = 2 + 1 = 3 against W (d, {b, c}) = 3 and with W ({b, c}, a) +
γ = 1 + 1 = 2 against W (a, {b, c}) = 1.

Since we have now defined all semantics, we can fully investigate the WAF from
Figure 8 for acceptability, as we have already done in Section 2 with the respective
AAF from Figure 2. The αγ-grounded semantics is not covered in this work, as in the
original paper by Bitarelli et al. [7], no definition for these semantics was presented.

a b

c d

2

4

5

3

Figure 8: Reintroduction of the WAF F1 to calculate the αγ-extensions with various
parameters.

Example 17 Consider the WAF F1 from Figure 8 with the parameters α = 0 and
γ = 0. By calculating the 00-extensions, we get:

– 00-adm(F) = {∅, {a}, {c}, {a, c}}.

– 00-comC3(F) = {{a}, {a, c}}.

– 00-prf(F) = {{a, c}}.

14

– 00-stb(F) = {{a, c}}.

In the respective AAF without weights, {a, d} would be admissible, complete, pre-
ferred and stable. Due to the weighting of the attacks, {a, d} can neither 0-defend
against c nor against b, since W (c, {a, d}) > W (({a, d}), c) with W (c, {a, d}) = 5,
W ({a, d}), c) = 3 and W (b, {a, d}) > W ({a, d}, b) with W (b, {a, d}) = 4, W ({a, d}, b) =
2. As a result, the set {a, d} is not 00-admissible and therefore also not 00-completeC3,
00-preferred or 00-stable.

In Example 18 we calculate the extensions of the WAF from Figure 8 by adjusting
the parameter α, which allows for inner conflict within an extension.

Example 18 Consider the WAF F1 from Figure 8 with the parameters α = 2 and
γ = 0. By calculating the 20-extensions, we get:

– 20-adm(F) = {∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}}.

– 20-comC3(F) = {{a, b, c}}.

– 20-prf(F) = {{a, b, c}}.

– 20-stb(F) = {{a, b, c}}.

The set {a, b, c} is 20-admissible, since the attack from a to b is relaxed, resulting
in W ({a, b, c}, {a, b, c}) ≤ α with W ({a, b, c}, {a, b, c}) = 2 and α = 2. {a, b, c} is
also the only 20-completeC3 extension, because the sets {a, b} and {a, c} are not 20-
completeC3, since the attack from a to b is relaxed through the parameter α and b
0-defends c against d.

In Example 19 we calculate the extensions of the WAF from Figure 8 by adjusting
the parameter γ, to relax the notion of w-defence:

Example 19 Consider the WAF F1 from Figure 8 with the parameters α = 0 and
γ = 2. By calculating the 02-extensions, we get:

– 02-adm(F) = {∅, {a}, {c}, {a, c}, {a, d}}.

– 02-comC3(F) = {{a}, {a, c}, {a, d}}.

– 02-prf(F) = {{a, c}, {a, d}}.

– 02-stb(F) = {{a, c}, {a, d}}.

Through relaxing the γ-defence with γ = 2, the set {a, d} can successfully defend
itself against the attacks from a and c, since (W (b, {a, d}) − W ({a, d}, b)) ≤ 2 and
(W (c, {a, d})−W ({a, d}, c)) ≤ 2, resulting in the same admissible sets and extensions
as in the respective AAF without weights.

15

4 Answer Set Programming
In this section, we introduce answer set programming (ASP), a form of logic pro-
gramming and explore its functionality. In addition, we provide an overview of the
software system Clingo [26], focusing on its operation and structure and conclude
with a simple example to illustrate the principles and capabilities of ASP.

Answer set programming, is a type of declarative programming that originated
from logic programming and non-monotonic reasoning. The history of ASP dates
back to the late 1980s and early 1990s when it was first introduced as a form of logic
programming by Vladimir Lifschitz and Michael Gelfond, aimed to address complex
problem-solving tasks [32, p. 5].

In answer set programming, a problem is declared as a logic program in the form
of rules, which consist of a head and a body. An ASP rule might be:

m i l l e n n i a l (P) :− born (P, Y) , Y >= 1981 , Y =< 1996 .

This rule reads as “A person P is a millennial if P is born between 1981 and 1996”.
Here millennial(P) is the head of the rule and born(P, Y), Y >= 1981, Y =<
1996 is the body. The body specifies a condition that must be true for the head to
be considered true. For more complex problems, ASP is equipped with additional
types of rules such as constraints or choice rules.

The benefit of using ASP is that once a problem is formulated as a logic program,
an ASP solver can then process it efficiently. First a given problem is modeled as a
logic program. Then, the typical method is to initially convert the logic program into
a variable-free ground format using a grounder and then compute the stable models
with a solver. The stable models, also known as answer sets, provide one or multiple
solutions to the given problem. These stable models can then be interpreted to get
the solution for the problem.

Figure 9, sourced from [30], illustrates the workflow of answer set programming
within the software-system Clingo [26], which combines the ASP grounder Gringo
[28] and the ASP solver Clasp [27].

The declarative nature of ASP makes it applicable to a wide range of applications,
especially in areas with a high degree of knowledge representation. In [25], some
use cases are addressed where ASP is applied, including areas such as robotics, com-
putational biology, bioinformatics and industrial applications. The software system
ASPARTIX [22], presented in the next section, utilizes ASP to solve a wide range of
problems in the area of abstract argumentation.

Listing 1 shows an example of an ASP-encoding that was extracted from [32],
which calculates all prime numbers from 1 to the input value n using Clingo.

16

Figure 9: The workflow of ASP [30].

Listing 1 ASP-encoding for Prime numbers
1 % Prime numbers from 1 to n .
2
3 % input : p o s i t i v e i n t e g e r n .
4
5 composite (N) :− N = 1 . . n , I = 2 . .N−1, N\ I = 0 .
6 % achieved : composite (N) i f f N i s a composite number from
7 % { 1 , . . . , n } .
8
9 prime (N) :− N = 2 . . n , not composite (N) .

10 % achieved : prime (N) i f f N i s a prime number from { 1 , . . . , n } .
11
12 #show prime /1 .

Below, we describe in more detail the individual components from Listing 1 for the
calculation of prime numbers within the range 1..N.

– Line 5: All composite numbers N within the range 1..n are identified. The
expression N\I = 0 utilizes the modulo operation, which calculates the remainder
when N is divided by I = 2..N-1. If there is no remainder N is divisible by I and
therefore, N is identified as a composite number.

– Line 9: A number N is considered a prime number if it is not composite. This is
determined using not composite(N). This rule filters out all numbers that have
been identified as composite, thereby leaving behind numbers that are prime. The
specified range for N is 2..n, as the number 1 is not considered a prime number
by definition.

17

– Line 12: The show prime/1 directive signals to Clingo that the output should
include the results of the prime/1 predicate. The 1 notation indicates that prime
is a unary predicate, meaning it takes one argument.

In Example 20, we analyze the ASP-encoding for prime numbers from Listing 1
with the input n=8. The program is executed by the command **clingo primes.lp
-c n=8**.

Example 20 For the input n=8, Clingo first identifies all composite numbers be-
tween 1 and 8, which in this instance are 4, 6 and 8. Clingo proceeds to identify all
numbers which fulfill the condition of being prime. In this case, these are all numbers
from 2 to 8 that are not composite and thus the output is 2, 3, 5 and 7 for prime.

This example is primarily intended to illustrate the core functionalities of ASP,
however, the application scope of ASP is significantly wider. Lifschitz [32] provides
a solid introduction to this topic and shows a variety of practical examples and
application areas. In Section 5, we will present an example from the software system
ASPARTIX[22] that demonstrates how ASP can be applied in the field of abstract
argumentation.

18

5 Related Work
In this section, we demonstrate how the semiring-based weighted argumentation
frameworks from Bistarelli et al. [7] differ from other approaches by examining the
notion of defence for the respective WAFs. Subsequently, we introduce ASPARTIX
[22] and ConArg [8], which are well-established software systems in the field of ab-
stract argumentation. ASPARTIX solves argumentation problems using answer set
programming and supports various semantics. ConArg utilizes constraint program-
ming and is particularly interesting as a reference system because it supports the
WAFs from Bistarelli et al. [7].

5.1 Various Approaches for Weighted Argumentation Frameworks
There are various approaches for weighted argumentation frameworks with weights
on attacks, which can be distinguished between qualitative frameworks [19, 29, 16]
with preference relations over attacks and quantitative frameworks [33, 13, 7] with a
specific numeric value for each attack [10]. The semiring-based WAFs from Bistarelli
et al. [7] include an extended notion of defence, which enables the comparison of the
cumulative weight of attacks. A detailed explanation on this topic can be found in
[10], from which the example shown in this section is derived. Comparisons between
the notions of defence are made with the WAFs from Martinez et al. [33] and Coste-
Marquis et al. [16].

The main difference in the notions of defence is that in the semiring approach from
Bistarelli et al. [7] the cumulative weight of multiple attacks is taken into account,
while in the approaches of Martinez et al. [33] and Coste-Marquis et al. [16], only
the weights of individual attacks are considered. In Example 21, sourced from [10],
we demonstrate these differences by examining the WAF from Figure 10.

c

a

b

d

e

f

3

2

3

2

1

Figure 10: Example WAF for various notions of w-defence[10].

Example 21 Consider the WAF from Figure 10. The argument c is successfully w-
defended by the set {e, f} under the approach of Bistarelli et al., using the semirings,
since W (d, c) = 3 and W ({e, f}, d) = 3 and thus W (d, c) <= W ({e, f}, d) is true.
Under the approaches of Martinez et al. and Coste-Marquis et al., the cumulative

19

weight is not considered, instead, only the strongest argument for defence counts. In
this case, it would be the argument e, which attacks d with the weight of 2. Since
the attack from d to c has a value of 3, the weight of the attack from e to d is
not sufficient to successfully defend c against d. Another characteristic of the w-
defence from Bistarelli et al. can be seen when we examine whether d w-defends
the set {a, b} against the attacks from c. Under the approaches of Martinez et al.
and Coste-Marquis et al., {a, b} would be successfully defended, since again only the
individual attacks are considered and thus the argument d successfully defends {a, b}
against c. Under the approach from Bistarelli et al., the set {a, b} is not w-defended
by d, since W (c, {a, b}) = 5 and W (d, c) = 3 and thus the condition for w-defence
W (c, {a, b}) <= W (d, c) is not met.

As demonstrated in Example 21, through the semiring-based WAFs of Bistarelli et
al., it is possible to consider cumulative attacks, thereby enabling an extended notion
of w-defence. This allows for a more detailed examination of WAFs with respect to
acceptability.

5.2 Aspartix
ASPARTIX [22] is a software system that utilizes ASP to solve reasoning problems in
the area of abstract argumentation. Initiated at the Vienna University of Technology
in 2008, ASPARTIX has been under continuous development and has established
itself as the reference ASP system in the field of abstract argumentation [17].

Figure 11, sourced from [21], illustrates the basic workflow of ASPARTIX. The
modular design of the system allows for the selection of specific ASP-encodings,
which can be fed along with the input-AAF to an ASP solver for computing the
extensions of the respective semantics. To solve argumentation problems, ASPARTIX
is compatible with the ASP solvers Clasp [27] and DLV [31].

Figure 11: Basic workflow of ASPARTIX [21].

The systems supports various formalisms such as abstract argumentation frame-
works (AAFs), bipolar argumentation frameworks (BAFs), preference-based argu-

20

mentation frameworks (PAFs) and value-based argumentation frameworks (VAFs)
[23]. The ASP-encodings, included in ASPARTIX, are continuously improved and
the system also regularly participates in the ICCMA [38] Contest.

In ASPARTIX, an AAF is represented through a logic program, which serves as
the input for the ASP-solver. The fact arg(a). stands for an argument a and the fact
att(a, b). for an attack from a to b. Listing 2 shows the AAF from Figure 2 modeled
as a logic program.

Listing 2 AAF modeled as a logic program.
1 arg (a) .
2 arg (b) .
3 arg (c) .
4 arg (d) .
5 a t t (a , b) .
6 a t t (b , d) .
7 a t t (d , c) .
8 a t t (c , d) .

The as a logic program modeled WAFs, discussed in Section 6, will also be based on
this format with an additional weighting of the attacks. Listing 3 shows an example
of an ASP-encoding to compute complete extensions, which was presented in [23].

Listing 3 ASP-encoding for complete extensions.
1 % Guess a s e t S \ subseteq A
2 in (X) :− not out (X) , arg (X) .
3 out (X) :− not in (X) , arg (X) .
4
5 % S has to be c o n f l i c t −f r e e
6 :− in (X) , in (Y) , a t t (X,Y) .
7
8 % The argument x i s de f ea ted by the s e t S
9 de f ea ted (X) :− in (Y) , a t t (Y,X) .

10
11 % The argument x i s not defended by S
12 not_defended (X) :− at t (Y,X) , not de f ea ted (Y) .
13
14 % admi s s ib l e
15 :− in (X) , not_defended (X) .
16
17 % Every argument which i s defended by S be longs to S
18 :− out (X) , not not_defended (X) .

Below, we examine the ASP-encoding from Listing 3 in detail. In the encoding,
each subset of an input AAF is checked to see if it meets the requirements of com-
pleteness. If any of these requirements are not fulfilled, another subset is checked.

– Lines 2-3: A random subset S is guessed from the input AAF.

21

– Line 6: The set S is checked for conflict-freeness, with the constraint, that no
attacks within S are allowed.

– Line 9: All arguments, which are defeated by S are identified. This is the case,
when an argument is attacked by S.

– Line 12: An argument is not_defended, if it is attacked by an argument that is
not_defeated.

– Line 15: The set S is examined for admissibility by checking if an argument
contained in S is not_defended. If that is the case, S is not admissible, which is a
basic requirement for complete extensions and thus S would also not be complete.

– Line 18: It is checked whether S is a complete extension. S is not a complete
extension if an argument outside of S is defended, which in this case is expressed
by not not_defended(X).

The encodings for WAFs in Section 6 are based on the foundations of the ASPAR-
TIX encodings. Even though the encodings differ in details, ASPARTIX nonetheless
provides a stable basis for implementing various expansions of AAFs.

5.3 ConArg
ConArg [8] is a software tool for modeling and solving problems in the field of abstract
argumentation, which was primarily developed by researchers from the University of
Perugia in Italy. It is based on constraint programming and therefore uses the open
source C++ toolkit Gecode [37]. The stand alone version of ConArg can be executed
on both Windows and Linux. With the ConArgLibrary [6] the core functionalities
of ConArg are also available as a C++ library. ConArg supports various seman-
tics, including the semiring-based WAFs from Bistarelli et al. [7] and is therefore
particularly interesting to use as a reference system.

For WAFs, the semantics

• αγ-admissible

• αγ-preferred

• αγ-complete

• αγ-stable

• αγ-grounded

are supported, under the problem types:

• Enumerate • Credulous • Skeptical

The ConArg input format for WAFs is based on the ASPARTIX format, with
additional weights on attacks. This adaptation is shown in Listing 4, where the
WAF from Figure 3 is modeled for ConArg.

22

Listing 4 Input WAF for ConArg.
1 arg (a) .
2 arg (b) .
3 arg (c) .
4 arg (d) .
5 arg (e) .
6 a t t (a , b) : −2.
7 a t t (b , d) : −4.
8 a t t (d , c) : −3.
9 a t t (c , d) : −5.

The selection of the specific semantics and the parameters for relaxation in ConArg
is done through command-line arguments when calling the program. For example
the command **conarg -w weighted -e complete -s d -a 1 -g 2 inputWAF.dl** tests
the argument d of an input WAF for skeptical acceptance with the parameters α = 1
and γ = 2.

23

6 ASP Encodings for Weighted Argumentation Frameworks
In this section, we introduce ASP-encodings for weighted argumentation frame-
works, which are based on the definitions from Section 3 for α-conflict-free sets,
αγ-admissible sets, αγ-completeC3 semantics and αγ-stable semantics. For the de-
velopment of the encodings, we adopted approaches from ASPARTIX [22]. The
αγ-preferred semantics is not addressed in this work, as the undertaken approaches
did not calculate some αγ-preferred extensions. Here, an approach with labeling se-
mantics would be better to also make use of Clingo heuristics for the maximization
of a set. To verify the correctness of the encodings, experiments were conducted
for all semantics under various parameters and the results were compared with the
respective results of ConArg. The subsequent ASP-encodings for weighted argu-
mentation frameworks build upon each other, meaning that from conflict-freeness
to stable semantics, all lines are also contained in the subsequent encodings. For a
clearer illustration, only the parts that are specific to each encoding will be shown in
the respective listing.

6.1 Modeling Weighted Argumentation Frameworks
In our approach for modeling WAFs as logic programs, we have oriented towards the
ASPARTIX format, with the expansion of attacks with an additional numeric weight
as the third element. Through this type of modeling, we can directly use the attack
fact in the subsequent ASP-encodings for WAFs, without adding more fact for the
specific weights.

a b

c d

5

3
1

2

1

Figure 12: Example for modeling WAFs in ASP.

Listing 5 shows the WAF from Figure 12 modeled as a logic program. The fact
att(a,b,2) expresses that the argument a attacks the argument b with an attack
weight of 2. In addition, Clingo provides the possibility to express, for example
through att(b,d,_), that only the attack between the arguments b and d is consid-
ered, regardless of its weight.

24

Listing 5 WAF modeled as a logic program.
1 arg (a) .
2 arg (b) .
3 arg (c) .
4 arg (d) .
5 a t t (a , b , 2) .
6 a t t (a , c , 1) .
7 a t t (c , d , 5) .
8 a t t (d , b , 1) .
9 a t t (d , c , 3) .

6.2 Conflict-freeness
In Listing 6, we present the ASP-encoding for α-conflict-free sets. In the encoding
each subset S of an input WAF is checked to see if the weight of the attacks within
S is greater than the input parameter α. If that is the case, the respective S is not
α-conflict-free and another subset is checked.

Listing 6 ASP-encoding for α-conflict-free sets.
1 % Guess a s e t S \ subseteq A
2 in (X) :− not out (X) , arg (X) .
3 out (X) :− not in (X) , arg (X) .
4
5 % Sum of weights f o r a l l a t tack s with in the s e t S .
6 t o t a l I n t e r n a l C o n f l i c t W e i g h t (Wconf) :− Wconf = #sum{ W,X,Y : in (X) ,

in (Y) , a t t (X, Y, W) } .
7
8 % alpha−c o n f l i c t −f r e e
9 :− t o t a l I n t e r n a l C o n f l i c t W e i g h t (Wconf) , Wconf > alpha .

In the following, we provide a description of the ASP-encoding by explaining the
lines of the code divided according to functionality.

– Lines 2-3: A random subset S is guessed from the input WAF.

– Line 6: The total internal conflict weight of the attacks within S is calculated.
This is done by the #sum aggregate function.

– Line 9: The set S is checked for α-conflict-freeness. If the sum of weights of the
attacks within S is larger than the value of the input parameter alpha, then S is
not α-conflict-free.

6.3 Admissibility
In Listing 7, we present the ASP-encoding for αγ-admissible sets. In addition, the
full ASP-encoding also contains the ASP-encoding for α-conflict-free sets from List-
ing 6. To verify a set S for admissibility, it is checked whether S can successfully

25

defend against all attacks from outside S. Therefore, the total weight of an attack-
ing argument is compared with the total attack weight of S against the argument,
with additional consideration of the input parameter gamma, to relax the notion of
w-defence.

Listing 7 ASP-encoding for αγ-admissible sets.
1 % Sum of weights from an argument x out s i d e S aga in s t S
2 attWeightToSet (X, WattArg) :− out (X) , WattArg = #sum{ W,Y : in (Y) ,

a t t (X, Y, W) } .
3
4 % Sum of weights from S aga in s t an argument x
5 attWeightFromSet (X, WattSet) :− out (X) , WattSet = #sum{ W,Y : in (Y) ,

a t t (Y, X, W) } .
6
7 % The argument x i s de f ea ted by S
8 de f ea ted (X) :− in (Y) , out (X) , a t t (Y,X,_) , attWeightToSet (X, WattArg) ,

attWeightFromSet (X, WattSet) , WattArg <= WattSet + gamma.
9

10 % The argument x i s not defended by S
11 not_defended (X) :− out (Y) , a t t (Y,X,_) , not de f ea ted (Y) .
12
13 % alphaGamma−admi s s i b l e
14 :− in (X) , not_defended (X) .

Below, we examine the ASP-encoding for αγ-admissible sets in detail. Key concepts
are the calculation of the total attack weight from an argument to the set S, the
calculation of the attack weight from S against an attacking argument, checking
whether an argument is defeated by S and finally checking whether an argument in
S is not successfully defended by S against all attacks. If an argument in S is not
successfully defended, then S is not αγ-admissible.

– Line 2: The composite weight of all attacks from an argument x outside S against
S is calculated by using the #sum aggregate function.

– Line 5: The composite weight of all attacks from the set S against an argument
x outside S is calculated by using the #sum aggregate function.

– Line 8: An argument x outside S is defeated, if the total weight of the attacks
from the argument x is less or equal the total weight from S to the argument x
plus the input parameter gamma.

– Line 11: An argument x is not_defended by S, if the attacking argument y is
not_defeated by S.

– Line 14: The set S is examined for admissibility by checking if an argument
contained in S is not_defended. If that is the case, S is not αγ-admissible.

26

6.4 Complete Semantics
In Listing 8, we present the ASP-encoding for αγ-complete semantics. The full en-
coding also includes the ASP-encoding for α-conflict-free and αγ-admissible sets from
Listings 6 and 7, since both are prerequisites for αγ-complete extensions. To examine
a set S for αγ-completeness, we check whether an argument outside S is γ-defended
by S, with the defence weight of the respective argument also taken into account. If
such an argument exists, S is not αγ-complete.

Listing 8 ASP-encoding for αγ-complete extensions.
1 % Defence weight from one argument out s id e S to another
2 defWeight (X,Y,W) :− out (X) , out (Y) , a t t (X,Y,W) .
3 defWeight (X,Y, 0) :− out (X) , out (Y) , not a t t (X,Y,_) .
4
5 % The argument x i s not ou t s id e defended
6 not_outsideDefended (X) :− out (Y) , out (X) , a t t (Y,X, Watt) ,

defWeight (X,Y, Wdef) , attWeightFromSet (Y, Wset) , attWeightToSet (Y,
WattArg) , Watt + WattArg > Wdef + Wset + gamma.

7 not_outsideDefended (X) :− out (Y) , out (X) , a t t (Y,X,_) ,
attWeightFromSet (Y, Wset) , Wset = 0 .

8
9 % alphaGamma−complete

10 :− out (X) , not not_outsideDefended (X) ,
t o t a l I n t e r n a l C o n f l i c t W e i g h t (Wconf) , attWeightToSet (X,
WattArg) , attWeightFromSet (X, WattSet) , (Wconf + WattArg +
WattSet) <= alpha .

In the following, we examine the ASP-encoding for αγ-complete semantics in detail.
The calculation of the def_weight is done for arguments outside S. This weight is
taken into account when checking if an argument is not_outsideDefended. If an
argument that attacks another argument outside S is not attacked by S, then this
argument is always not_outsideDefended. The set S is not αγ-complete, when there
is an argument, which is not not_outsideDefended, and by adding this argument,
S is still α-conflict-free.

– Lines 2-3: The def_weight from one argument outside S to another is calculated.
If there is no defence, expressed by att(X,Y,_), the defence weight is 0.

– Lines 6-7: It is checked whether an argument x is not_outsideDefended. For
this purpose, it is examined whether the argument x, together with the set S, can
successfully defend itself against all attacking arguments, while also taking into
account the value from the input parameter gamma. This verification is carried
out by Watt + WattArg > Wdef + Wset + gamma. In Line 7, it is additionally
checked if all arguments y, which attack an argument x, are also attacked by S.
If there is no attack from S to an argument y, then Wset=0 is fulfilled and the
argument x is thus not_outsideDefended.

– Line 10: The set S is examined for αγ-completeness by checking if an argument

27

contained in S is not not_outsideDefended. In addition, by adding the argu-
ment x, α-conflict-freeness must still be fulfilled, which is verified by (Wconf +
WattArg + WattSet) <= alpha.

6.5 Stable Semantics
In Listing 9, we introduce the ASP-encoding for αγ-stable semantics. The encodings
from the previously introduced listings are also included in the full encoding, with
the additional condition that all arguments which are not contained in S must be
attacked by S.

Listing 9 ASP-encoding for αγ-stable extensions.
1 % The argument x i s attacked by S
2 attackedByS (X) :− out (X) , in (Y) , a t t (Y,X,_) .
3
4 % alphaGamma−s t a b l e
5 :− out (X) , not attackedByS (X) .

– Line 2: An argument outside S is attackedByS if the condition att(Y,X,_) is
met, since the weight is not relevant.

– Lines 5: The set S is αγ-stable, if all Arguments that are outside S are attacked
by S.

6.6 Discussion
The provided encodings are intended as a foundation but can still be further opti-
mized, for example, as introduced in [20] through preprocessing techniques for calcu-
lating credulously accepted arguments under complete semantics. Furthermore, for
the case α = 0, the calculation of the internal conflict weight could be simplified,
since in this case generally no attacks within a w-conflict-free set are allowed. For an
ASP-encoding for preferred semantics, an approach with labeling semantics would
be better, to also make use of Clingo heuristics for the maximization of a set. For
an implementation of αγ-grounded semantics, a definition for w-grounded semantics
is presented in [9], in which the w-grounded semantics is defined as the maximal
(with respect to set inclusion) w-admissible extension included in the intersection of
w-complete extensions. However, if relaxations are to be allowed, this must also be
considered in the implementation.

28

7 Evaluation of the ASP Implementation
In this section, we examine the ASP-implementation for weighted argumentation
frameworks in detail. For this purpose, we have generated test instances of weighted
argumentation frameworks using AF-Benchgen2 [15] with an additional weighting of
the attacks, and tested these under various semantics and problem types (EE, EC,
ES, DC, DS). Additionally, we examined instances from ICCMA 2019 [4], which we
also converted into weighted argumentation frameworks, by assigning weights to the
attacks.

7.1 Generation of Test Cases
To generate test instances, the AAF Generator AF-Benchgen2 [15] was utilized, for
the creation of a total of 300 AAFs. The models supported by AFBenchgen2 for
random graphs are Barabási-Albert [1], Watts–Strogatz [40], and Erdős–Rényi [24].
For each model, 100 AAFs were generated, which we weighted by assigning a random
integer value between 1 and 10 to the attacks, based on a uniform distribution.
Additionally, for the problem types DC and DS, randomized test arguments were
generated, selected within the range corresponding to the number of arguments for
the respective instance.

Below are the parameters listed with which the test instances were generated. The
descriptions of the parameters were taken from the description integrated in AF-
BenchGen2. For the model Erdős–Rényi, we chose a high value for ER_probAttacks
to analyze how the ASP-encodings behave with a high number of attacks.

– BA_WS_probCycles = 0.5. Probability that an argument is part of a cycle (used
with BarabasiAlbert and WattsStrogatz only).

– ER_probAttacks = 0.5. Probability of having an attack between two arguments
(used with ErdosRenyi only).

– WS_baseDegree = 2. Base degree for each node (used with WattsStrogatz only).

– WS_beta = 0.5. Probability to ’rewire’ an edge (used with WattsStrogatz only).

In addition to the generated test instances, we also utilized the AAFs from ICCMA
2019 [4], with an additional weighting of the attacks through a random integer value
between 1 and 10, based on a uniform distribution. To be able to perform experiments
for WAFs under time restrictions, we limited the maximum number of arguments to
300, thus examining 186 of the 326 instances.

7.2 Experimental Design
In the experiments, we explore the generated instances of WAFs under various seman-
tics, relaxation parameters, and problem types. Initially, we analyze the instances in

29

terms of acceptability, and then we compare the runtime performance of the ASP-
implementation with the runtime performance of ConArg. The types of problems we
consider are:

Definition 19 Given a WAF F = ⟨A, R, W, S⟩ and a semantics σ ∈ {αγ-adm,
αγ-com, αγ-prf , αγ-stb}, the following problem types are defined:

– EE-σ: Enumerate all σ-extensions of F .

– DC-σ: For a given argument a ∈ A, decide whether a is in at least one σ-extension
of F .

– DS-σ: For a given argument a ∈ A, decide whether a is in all σ-extensions of F .

– EC-σ: Enumerate all a ∈ A, which are in at least one σ-extension of F .

– ES-σ: Enumerate all a ∈ A, which are in all σ-extensions of F .

The configuration for Clingo must be set accordingly to solve the specific problem
type. To evaluate an argument a for DC-σ, the constraint : −not in(a) is added, and
if the program is satisfiable, the argument is credulously accepted. For DS-σ, :- in(a)
is added, and if the program is unsatisfiable, it means an answer set was found that
does not include the argument, therefore, the argument is not skeptically accepted.
For the problem types EC and ES, the Clingo heuristics brave and cautious, are
applied respectively. The commands for each problem type are listed below.

– EE-σ: **clingo inputWAF.apx semantics.dl filter.lp 0**.

– DC-σ: **clingo inputWAF.apx semantics.dl filter.lp 1**.

– DS-σ: **clingo inputWAF.apx semantics.dl filter.lp 1**.

– EC-σ: **clingo inputWAF.apx semantics.dl filter.lp -e brave**.

– ES-σ: **clingo inputWAF.apx semantics.dl filter.lp -e cautious**.

In the experiments we investigate the research questions defined in Section 1. The
experiments are divided into the sections Admissibility, Complete Semantics, and
Stable Semantics. To demonstrate the properties of the ASP-implementation, the
generated instances of the models Barabási-Albert, Watts–Strogatz, and Erdős–Rényi
were either examined individually or suitable combinations were chosen. For the
experiments with the ASP-implementation, the CPU Time was taken directly from
the Clingo output. For the experiments with ConArg the runtime was recorded using
Python, since ConArg does not output a runtime. For conducting the experiments
with the instances from ICCMA 2019, a timeout of 600s was chosen. The experiments
were carried out on a server with the operating system Ubuntu 20, with an octacore
Intel Xeon E5-2643V3 processor and 48GB RAM.

30

7.3 Results
In this section, we present our experimental results. For the generated instances
with the models Barabási-Albert, Watts-Strogatz, and Erdős–Rényi, we apply the
short forms B, W and E, respectively. In Section 7.3.1, we investigate the impact
of the model by individually examining the instances B, W and E for the problems
EE and EC under various semantics. In Section 7.3.2, we examine the impact of
the problem type on the ASP-implementation with a combination of the instances
B and W under various semantics. In Section 7.3.3 we investigate the impact of the
relaxations. Therefore, we apply various relaxations and examine their impact on
acceptability under various semantics, and also investigate the effect of the relaxations
on the runtime performance of the ASP-implementation. In Section 7.3.4, we examine
the impact of the implementation by comparing the runtime performance of the
ASP-implementation with the runtime performance of ConArg with the generated
instances and with instances from ICCMA 2019.

7.3.1 Impact of the Model

To investigate the impact of the model in terms of acceptability under various seman-
tics, we have individually analyzed the instances B, W and E in these experiments.
For the investigation of admissibility, we selected the problem EC, because for the
problem EE the output would be excessively large. For the αγ-complete and αγ-
stable semantics, we chose the problem EE, as here the number of extensions is
within feasible limits.

Admissibility

Figure 13: Average credulously accepted arguments of the problem EC under αγ-
admissible semantics with the parameters α = 0 and γ = 0 for different
models.

31

In Figure 13 we see the average number of credulously accepted arguments under
αγ-admissible semantics with the parameters α = 0 and γ = 0. The instances B
have the highest average number of credulously accepted arguments, followed by the
instances W. For the instances E, due to the high number of attacks, credulously
accepted arguments were found only for instances with 10 arguments. In Section
7.3.3, we will revisit this issue and examine the same instances with relaxations.

The runtime for solving the problem EC is shown in Figure 14. We see that the
calculation of credulously accepted arguments for the instances W was the fastest,
and also the runtime for the instances B was only slightly higher. The by far highest
runtime is for the instances E, which can be attributed to the high number of attacks
between the arguments, and the fact that no credulously accepted arguments were
found for instances with more than 10 arguments.

(a) Instances Barabási-Albert (B). (b) Instances Watts-Strogatz (W).

(c) Instances Erdős–Rényi (E). (d) Average runtime.

Figure 14: Runtime comparison of the problem EC under αγ-admissible semantics
with the parameters α = 0 and γ = 0 for different models.

32

Complete Semantics

As illustrated in Figure 15, we observe that, for the average number of 00-complete
extensions, the instances B and W behave similarly. Furthermore, the average num-
ber of 00-complete extensions increases exponentially with the number of arguments.
For the instances E, only the empty set is output for instances with 20 arguments
or more, which is not surprising since also no credulously accepted arguments were
found under αγ-admissible semantics with the parameters α = 0 and γ = 0. For the
instances E, only instances up to 70 arguments were successfully computed, as for a
larger number of arguments the runtime limit of 600 seconds was reached.

Figure 15: Average 00-complete extension of the problem EE for different models.

In Figure 16, the runtime for calculating the 00-complete extensions of the problem
EE for the different instances is shown. We observe that for the instances B and W, all
00-complete extensions are calculated within the runtime limit, but with the runtime
increasing exponentially due to the high number of 00-complete extensions. The by
far highest runtime, is for the instances E, where the runtime limit of 600 seconds is
reached for instances with 70 arguments or more, which we already observed for the
problem EC under αγ-admissible semantics. To calculate the average runtime, the
experiment for 70 arguments was repeated with increased runtime limits.

33

(a) Instances Barabási-Albert (B). (b) Instances Watts-Strogatz (W).

(c) Instances Erdős–Rényi (E). (d) Average runtime.

Figure 16: Runtime comparison of the problem EE under αγ-complete semantics with
the parameters α = 0 and γ = 0 for different models.

Stable Semantics

In Figure 17, we see the average number of 00-stable extensions of the problem
EE for the instances B, W and E. We observe that for all instances, the number
of 00-stable extensions is low, and no extensions are found beyond 40 arguments.
Therefore, in Section 7.3.3, we will apply relaxation to obtain a larger number of
solutions.

The runtime for computing 00-stable extensions is shown in Figure 18. Since al-
most no 00-stable extensions were found, the runtime for the instances B and W
is significantly reduced compared to the runtime for the calculation of 00-complete
extensions. For the instances E, we see similarly high runtimes as observed for the
calculation of the 00-complete extension, reaching the timeout of 600s from 70 ar-
guments onwards. To calculate the average runtime for the instances E with 70
arguments, we repeated the experiment for these instances without time limits.

34

Figure 17: Average 00-stable extension of the problem EE for different models.

(a) Instances Barabási-Albert (B). (b) Instances Watts-Strogatz (W).

(c) Instances Erdős–Rényi (E). (d) Average runtime.

Figure 18: Runtime comparison of the problem EE under αγ-stable semantics with
the parameters α = 0 and γ = 0 for different models.

35

7.3.2 Impact of the Problem Type

In this section, we investigate the impact of the problem type on the combined
instances of B and W, as these exhibited similar behavior in the previous experiments.
Therefore, a total of 200 instances were examined. The instances E were not analyzed
in this section, as only few extensions can be found without relaxation, resulting in
similar runtime behavior for all problem types.

Admissibility

In Figure 19, the average runtime for the problems EC and DC under αγ-admissible
semantics with the parameters α = 0 and γ = 0 is illustrated. We observe that both
problem types exhibit similar runtime behavior, which is quite interesting because
with the problem EC, all credulously accepted arguments are calculated and with
the problem DC, only a specific argument is checked for acceptability. The problems
EE, ES, DS were not considered since for EE the output is too large, and for the
problems ES and DS, no skeptically accepted arguments can be found, as they would
have to be contained in the empty set.

Figure 19: Runtime comparison between the problems EC and DC under αγ-
admissible semantics with the parameters α = 0 and γ = 0 for the com-
bined instances B and W.

Complete Semantics

In Figure 20, we see the average runtime of various problem types under αγ-
complete semantics with the parameters α = 0 and γ = 0. The problems EC, ES,
DC and DS show similar runtime behavior, as has already been observed for the
problems EC and DC under αγ-admissible semantics. To accelerate the computation
time of the problems DC and DS, it would be advantageous to employ preprocessing

36

techniques to avoid evaluating all arguments, and thus achieving a faster runtime.
The problem EE has a higher runtime in comparison to other problems, which can
be attributed the high number of 00-complete extensions, as illustrated in Figure 15.

Figure 20: Runtime comparison between various problem types under αγ-complete
semantics with the parameters α = 0 and γ = 0 for the combined instances
B and W.

Stable Semantics

Figure 21: Runtime comparison between various problem types under αγ-stable se-
mantics with the parameters α = 0 and γ = 0 for the combined instances
B and W.

37

In Figure 21, the runtime of various problem types under αγ-stable semantics with
the parameters α = 0 and γ = 0 is illustrated. We observe a similar runtime across
all problem types. The problem EE shows no differences in runtime, since for the
parameters α = 0 and γ = 0, as can be seen in Figure 17, the number of 00-stable
extensions is low, and thus the number of extensions has no impact on the runtime.

7.3.3 Impact of the Relaxations

In this section, we investigate the impact of the relaxations under various semantics.
We analyzed the combined instances of B and W with the problem EC, and the
instances E with the problem EE. For the parameters α and γ, we have chosen
suitable values to illustrate the effects of the relaxations. Due to the high runtime of
the problem EE with the instances E, we only analyzed instances up to 60 arguments
in the associated experiments. The effects of the individual parameters were not
analyzed separately, as this would require an extended investigation, which is out of
the scope of this work.

Admissibility

In Figure 22, we see a comparison of the problem EC with various relaxation
parameters under αγ-admissible semantics, with the combined instances B and W.
We see that the number of credulously accepted arguments increases continuously
with the increase of the relaxation parameters. For the parameters α = 8 and γ = 8,
almost all arguments are credulously accepted. In terms of runtime, the relaxations
do not have significant effects, and a consistently fast runtime is achieved for all
instances.

(a) Average credulously accepted arguments. (b) Average runtime.

Figure 22: Relaxation comparison of the problem EC under αγ-admissible semantics,
with the combined instances B and W.

In Figure 23, a comparison of the problem EE with various relaxation parameters

38

for the instances E is illustrated. We see that as the parameters increase, the number
of average αγ-admissible extensions also steadily increases. However, beyond a certain
number of arguments, even with relaxations, the empty set is identified as the only
αγ-admissible extension. The relaxations result in a longer runtime, which is evident
for the relaxation parameters α = 8 and γ = 8.

(a) Average extensions. (b) Average runtime.

Figure 23: Relaxation comparison of the problem EE under αγ-admissible semantics,
with the instances E.

Complete Semantics

In Figure 24, we see a comparison of the problem EC with various relaxation
parameters under αγ-complete semantics with the combined instances of B and W.

(a) Average credulously accepted arguments. (b) Average runtime.

Figure 24: Relaxation comparison of the problem EC under αγ-complete semantics,
with the combined instances B and W.

The average number of credulously accepted arguments matches with the average

39

number of credulously accepted arguments for αγ-admissible semantics, as shown
in Figure 22, since for both semantics under the problem EC the same constraints
are present. However, we see that the runtime for αγ-complete semantics is higher.
Therefore, when investigating the problems DC and EC, the αγ-admissible semantics
should be chosen instead of the αγ-complete semantics.

In Figure 25, a comparison with various relaxation parameters of the problem EE
under αγ-complete semantics with instances E is illustrated. Due to the additional
constraints of αγ-complete semantics, we observe a lower average number of exten-
sions than for αγ-admissible semantics. The runtime is consistently higher compared
to αγ-admissible semantics, and we can again observe an increased runtime for the
parameters α = 8 and γ = 8.

(a) Average extensions. (b) Average runtime.

Figure 25: Relaxation comparison of the problem EE under αγ-complete semantics,
with the instances E.

Stable Semantics

In Figure 26, we see a comparison with various relaxation parameters for the prob-
lem EC under αγ-stable semantics with a combination of the instances B and W. We
observe that the average number of credulously accepted arguments is significantly
lower compared to αγ-admissible semantics. However, if the parameters α and γ are
chosen to be large enough, in this case α = 8 and γ = 8, we see that the number of
credulously accepted arguments is close to those of the αγ-admissible semantics with
the same relaxations. An effect of the relaxation parameters on the runtime for the
problem EC under αγ-stable semantics is not noticeable for these instances.

40

(a) Average credulously accepted arguments. (b) Average runtime.

Figure 26: Relaxation comparison of the problem EC under αγ-stable semantics, with
the combined instances B and W.

The effect of the relaxation parameters under αγ-stable semantics for the problem
EE with the instances E is illustrated in Figure 27. Without relaxations, the number
of αγ-extensions is almost zero. With the relaxation parameters α = 8 and γ = 8, 88-
stable extensions can be determined for instances with up to 40 arguments. Since αγ-
stable semantics involve additional constraints compared to αγ-complete semantics,
the number of extensions is accordingly lower. Regarding runtime, only for the
parameters α = 8 and γ = 8 a slight increase can be observed.

(a) Average extensions. (b) Average runtime.

Figure 27: Relaxation comparison of the problem EE under αγ-stable semantics, with
the instances E.

41

7.3.4 Impact of the Implementation

In this section, we investigate the impact of implementation by comparing the runtime
performance of the ASP-implementation with the runtime performance of ConArg.
We examine the instances B, W and E under various problems and semantics with
suitable values for relaxations. Additionaly, we examine instances from ICCMA 2019,
under αγ-admissible semantics for the problem DC.

Admissibility

In Figure 28, the runtime comparison between the ASP-implementation and ConArg
for the problem DC under αγ-admissible semantics with the parameters α = 0 and
γ = 0 is illustrated. We observe that for the combined instances of B and W, both
implementations show overall fast runtime performance. However, ConArg was able
to demonstrate better runtime performance except for a single instance with 90 argu-
ments. Due to the large output for the instances B and W, the problem EE was not
investigated under αγ-admissible semantics for these instances, but we will consider
this problem later in this section under αγ-complete and αγ-stable semantics.

Figure 28: Runtime comparison between the ASP-implementation and ConArg for
the problem DC under αγ-admissible semantics with the parameters α = 0
and γ = 0, with the combined instances B and W.

For the investigation of the instances E under αγ-admissible semantics, we chose
suitable relaxation parameters. In Section 7.3.3, we found that with the parameters
α = 8 and α = 8, we obtain a suitable number of extensions. In Figure 29, we see
that for both problems EE and DC, ConArg shows a consistently better runtime per-
formance than the ASP-implementation. The extended runtimes, which we observed
for the instances E are thus only encountered with the ASP-implementation.

42

(a) Average runtime EE. (b) Average runtime DC.

Figure 29: Runtime comparison between the ASP-implementation and ConArg for
the problems EE and DC under αγ-admissible semantics with the param-
eters α = 8 and α = 8, with the instances E.

To further investigate the runtime performances of the ASP-implementation and
ConArg under αγ-admissible semantics for the problem DC, we examined instances
from ICCMA 2019, with additional weights of the attacks ranging from 1 to 10.
For the execution of the experiment, we chose a timeout limit of 600 seconds and
considered instances with up to 300 arguments.

(a) ASP-implementation (b) ConArg

Figure 30: Runtime of the ASP-implementation and ConArg with the ICCMA in-
stances for the problem DC under αγ-admissible semantics with the pa-
rameters α = 0 and γ = 0.

In Figure 30, we see the runtimes of the ASP-implementation and ConArg for
calculating the problem DC under αγ-admissible semantics with the parameters α =
0 and γ = 0. With the ASP-implementation, 142 out of the 186 instances were

43

successfully calculated. For 37 instances, the timeout limit was reached and for 7
instances Clingo terminated with an error. With ConArg, the timeout was reached
11 times, thus 175 out of the 186 instances were successfully calculated. We observe
that the ASP-implementation already exhibits high runtimes for instances with less
than 50 arguments compared to ConArg, which shows runtimes of under 1 second
for these instances.

Figure 31: Runtime comparison of the ASP-implementation and ConArg with the
ICCMA instances for the problem DC under αγ-admissible semantics with
the parameters α = 0 and γ = 0.

In Figure 31, we see the runtime comparison between the ASP-implementation
and ConArg for the problem DC under αγ-admissible semantics with the parameters
α = 0 and γ = 0. The faster runtime is always shown, starting from a count of
10 arguments to exclude effects of runtime measurement. We observe that ConArg
consistently exhibits faster runtime. Only the computation of 3 instances could be
performed faster with the ASP-implementation under αγ-admissible semantics.

After evaluating the instances B, W, and E, as well as the instances from ICCMA,
we can conclude that ConArg, for the problem DC under αγ-admissible semantics,
consistently shows better runtime performance than the ASP-implementation, except
for a few individual instances.

Complete Semantics

To compare the runtime performance of the ASP-implementation with the runtime
performance of ConArg under αγ-complete semantics, we considered the problems
EE and DC for the combined instances B and W and for the instances E. For the
respective instances and problem types, we chose suitable relaxation parameters.

In Figure 32, we see the runtime comparison between the ASP-implementation and
ConArg for the problems EE and DC under αγ-complete semantics with the param-

44

(a) Average runtime EE. (b) Average runtime DC.

Figure 32: Runtime comparison between the ASP-implementation and ConArg for
the problems EE and DC under αγ-complete semantics with the parame-
ters α = 0 and γ = 0, with the combined instances B and W.

eters α = 0 and γ = 0 with the combined instances of B and W. For the problem
EE, the ASP-implementation shows a consistently fast runtime and demonstrates
better runtime performance than ConArg starting from 40 arguments. For the exe-
cution of the experiment with ConArg, runtime limits for calculations with 80 and
90 arguments were increased to be able to calculate the average runtime. For the
instances with 100 arguments, due to the high runtime of ConArg, we did not repeat
this experiment. As shown in Figure 32, for the problem DC under αγ-complete se-
mantics, ConArg shows better runtime performance up to 60 arguments, after which
the ASP-implementation performs better.

(a) Average runtime EE. (b) Average runtime DC.

Figure 33: Runtime comparison between the ASP-implementation and ConArg for
the problems EE and DC under αγ-complete semantics with the parame-
ters α = 8 and α = 8, with the instances E.

45

For the instances E, ConArg significantly outperforms the ASP-implementation in
terms of runtime for the problems DC and EE as shown in Figure 33. This difference
in runtime was also previously observed under αγ-admissible semantics.

We have calculated the problem DC with the ASP-implementation in this experi-
ment under αγ-complete semantics. As already discussed in Section 7.3.1, this leads
to an increased runtime, and therefore, for this problem, the αγ-admissible seman-
tics should be chosen, since the output is identical. As we can see by comparing
the Figures 28 and 32, the runtime for the problem DC with ConArg is different for
both experiments, indicating that this optimization has not yet been implemented in
ConArg.

Stable Semantics

For the runtime comparison under αγ-stable semantics, we only consider the prob-
lem EE, since ConArg encounters an error when processing the problems DC and
DS under these semantics. For the experiments, we have chosen suitable relaxation
parameters so that solutions can be found for αγ-stable extensions.

In Figure 34, the runtime comparison between the ASP-implementation and ConArg
for the problem EE with various instances and relaxations parameters is illustrated.
The calculation of the αγ-stable extensions displays a similar runtime behavior as
previously observed in experiments with αγ-complete semantics. For the combined
instances B and W with the relaxation parameters α = 4 and γ = 4, ConArg is
faster for a smaller number of arguments, but from 80 arguments onwards, the ASP-
implementation shows better runtime performance. For the instances E, ConArg
consistently shows better runtime performance than the ASP-implementation, as we
have also observed under αγ-complete semantics.

(a) Instances B and W, α = 4, γ = 4. (b) Instances E, α = 8, γ = 8.

Figure 34: Runtime comparison between the ASP-implementation and ConArg for
the problem EE under αγ-stable semantics, with various instances and
relaxation parameters.

46

7.4 Discussion
In this section, we further discuss the results of the experiments evaluated in Section
7.3 to address the research questions described in Section 1.

Impact of the Model
We observed that the model used for generating WAFs has a significant impact on

the runtime performance of the ASP-implementation. While the generated instances
with the models Barabási-Albert and Watts–Strogatz exhibit similar runtime behav-
ior, we observed a significantly higher runtime to solve the instances generated with
the model Erdős–Rényi, with a high number of attacks. In terms of acceptability, the
generated instances with the models Barabási-Albert and Watts–Strogatz behaved
similarly and showed a high number of accepted arguments and extensions under αγ-
admissible and αγ-complete semantics, whereas for αγ-stable semantics, hardly any
extensions were found without the use of relaxations. For the generated instances
with the model Erdős–Rényi, only credulously accepted arguments for instances with
a low number of arguments were found under all semantics.

Impact of the Problem Type
For the impact of the problem type, we observed that the ASP-implementation gen-

erally exhibited consistent runtime behavior across the different problem types. Only
for the problem EE, we observed an increase in runtime under αγ-complete seman-
tics, due to the large number of computed extensions. It is particularly interesting
that the problems EC and ES demonstrated similar runtime behavior compared to
the problems DC and DS. This is a benefit of the ASP-implementation, particularly
when examining all credulously or skeptically accepted arguments of a given WAF.
To improve the runtime performance of the problems DC and DS, it is advisable to in-
corporate preprocessing techniques to focus specifically on the investigated argument
and filter out arguments that are not relevant for the respective semantics.

Impact of the Relaxations
In our analysis of the impact of the relaxations, we observed that the relaxations

have no significant influence on the runtime performance of the ASP-implementation.
A difference in runtime for the problem EE is only observed when selecting relax-
ation parameters with high values. However, this difference is not specific to the
ASP-implementation, but is due to the increased computed extensions. Regarding
acceptability, we noted that under αγ-stable semantics without the use of relaxations,
hardly any credulously accepted arguments were found, and specifically for instances
generated with the model Erdős–Rényi, high relaxation parameters had to be chosen
to find acceptable arguments.

Impact of the Implementation
When comparing the runtime performance of the ASP-implementation with the

runtime performance of ConArg, we observed that under admissible semantics for

47

the problem DC, ConArg consistently exhibits better runtime performance for the
investigated instances. Under both αγ-complete and αγ-stable semantics, the ASP-
implementation demonstrated performance comparable to that of ConArg when in-
vestigating instances generated with the models Barabási-Albert and Watts-Strogatz,
but was significantly slower for instances generated with the model Erdős–Rényi. The
primary distinction between the implementations is that ConArg efficiently solves
instances with a large number of attacks under various semantics, while the ASP-
implementation shows slow runtime performance for these instances.

8 Conclusion
In this work, we have presented an initial approach to implement semiring-based
weighted argumentation frameworks using ASP. We have introduced ASP-encodings
for α-conflict-free sets, αγ-admissible sets, αγ-complete semantics and αγ-stable se-
mantics, which are compatible with the ASP system Clingo. We evaluated the ASP-
implementation under various semantics and problem types, with generated instances
of WAFs using different models and with instances from ICCMA 2019.

For αγ-complete semantics, we have found that there are several definitions [7,
11] that differ slightly. Therefore, along with these definitions, we have presented
an additional definition for αγ-complete semantics, where the counterattack of an
argument is also considered, but with the definition not being too general. This
definition also matches with the functionality of ConArg. An alternative approach
would be to adjust the notion of γ-defence to consider counterattacks, but in this
work, we have adhered to the original definition of γ-defence by Bistarelli et al. [7].

For the development of the ASP-encodings, we adopted approaches from ASPAR-
TIX. However, due to the underlying structure of the semiring and the resulting
composite weight of attacks, the encodings differ significantly, especially noticeable
in the ASP-encoding for αγ-complete semantics. The ASP-encodings have not yet
been optimized for performance, but are intended to demonstrate how an ASP-
implementation of semiring-based weighted argumentation frameworks can be done.

For the evaluation of the ASP-implementation, we generated instances of WAFs
using different models, and additionally, examined instances from ICCMA 2019. We
investigated these instances for acceptability under various problems, semantics and
relaxations parameters and also examined the runtime of the ASP-implementation.
Furthermore, we compared the runtime performance of the ASP-implementation with
that of ConArg. The ASP-implementation has the advantage of being able to com-
pute the problem types EC and ES without runtime losses and shows good runtime
performance under αγ-complete and αγ-stable semantics for various instances. How-
ever, for the problem DC under αγ-admissible semantics and for instances with a
high number of attacks, ConArg exhibits significantly better runtime performance
compared to the ASP-implementation.

48

Future Work
For future work, several approaches can be pursued. The provided ASP-encodings

can be further optimized by, for example, eliminating unnecessary computations,
such as avoiding the computation of the internal conflict weight when dealing with
WAFs where the relaxation of conflict-freeness is not required. Another possibility
is the application of preprocessing techniques, as already described for AAFs in [20]
for the problems DC and DS under αγ-complete semantics.

Another promising approach involves creating ASP-encodings using labeling se-
mantics. Definitions for labeling semantics are presented in [11], which also includes
definitions for w-preferred and w-grounded semantics. An implementation with la-
beling semantics has the advantage that Clingo heuristics can be applied for the
maximization of a set to investigate WAFs under αγ-preferred semantics. However,
for an implementation of αγ-preferred and αγ-grounded semantics the effects of re-
laxations must also be considered.

49

References
[1] Réka Albert and Albert-László Barabási. Topology of evolving networks: local

events and universality. Physical review letters, 85(24):5234, 2000.

[2] Leila Amgoud and Cayrol Claudette. A reasoning model based on the production
of acceptable arguments. Annals of Mathematics and Artificial Intelligence,
34:197–215, 2002.

[3] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based
argumentation frameworks. Journal of Logic and Computation, 13(3):429–448,
2003.

[4] Stefano Bistarelli, Lars Kotthoff, Francesco Santini, and Carlo Taticchi. Sum-
mary report for the third international competition on computational models of
argumentation. AI magazine, 42(3):70–73, 2021.

[5] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based con-
straint satisfaction and optimization. Journal of ACM, 44:201–236, 1997.

[6] Stefano Bistarelli, Fabio Rossi, and Francesco Santini. A conarg-based library for
abstract argumentation. In 29th IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2017, Boston, MA, USA, November 6-8, 2017,
pages 374–381, 2017.

[7] Stefano Bistarelli, Fabio Rossi, and Francesco Santini. A novel weighted de-
fence and its relaxation in abstract argumentation. International Journal of
Approximate Reasoning, 92:66–86, 2018.

[8] Stefano Bistarelli, Fabio Rossi, Francesco Santini, et al. Conarg: A tool for
classical and weighted argumentation. In COMMA, pages 463–464, 2016.

[9] Stefano Bistarelli and Francesco Santini. A hasse diagram for weighted sceptical
semantics with a unique-status grounded semantics. In Logic Programming and
Nonmonotonic Reasoning: 14th International Conference, LPNMR 2017, Espoo,
Finland, July 3-6, 2017, Proceedings 14, pages 49–56. Springer, 2017.

[10] Stefano Bistarelli and Francesco Santini. Weighted argumentation. Journal of
Applied Logics, 8(6):1589–1622, 2021.

[11] Stefano Bistarelli and Carlo Taticchi. A labelling semantics for weighted argu-
mentation frameworks. In 35th Edition of the Italian Conference on Computa-
tional Logic (CILC 2020), 2020.

[12] Álvaro Carrera and Carlos A. Iglesias. A systematic review of argumenta-
tion techniques for multi-agent systems research. Artificial Intelligence Review,
44:509–535, 2015.

50

[13] Claudette Cayrol, Caroline Devred, and Marie-Christine Lagasquie-Schiex. Ac-
ceptability semantics accounting for strength of attacks in argumentation. PhD
thesis, IRIT-Institut de recherche en informatique de Toulouse, 2010.

[14] Claudette Cayrol and Lagasquie-Schiex Marie-Christine. On the acceptability
of arguments in bipolar argumentation frameworks. European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pages 378–
389, 2005.

[15] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, et al. Generating chal-
lenging benchmark afs. COMMA, 14:457–458, 2014.

[16] Sylvie Coste-Marquis, Sébastian Konieczny, Pierre Marquis, and Mohand Akli
Ouali. Weighted attacks in arugmentation frameworks. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Thirteenth International
Conference, KR, pages 593–597. AAAI Press, 2012.

[17] Martin Diller, Wolfgang Dvořák, Jörg Pührer, Johannes Peter Wallner, and
Stefan Woltran. Applications of ASP in formal argumentation. In Proceedings of
the Second Workshop on Theory and Applications of Answer Set Programming,
2018.

[18] Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
intelligence, 77:321–357, 1995.

[19] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael
Wooldridge. Weighted argument systems: Basic definitions, algorithms, and
complexity results. Artificial Intelligence, 175:457–486, 2011.

[20] Wolfgang Dvořák, Matthias König, Johannes P Wallner, and Stefan Woltran.
Aspartix-v21. arXiv preprint arXiv:2109.03166, 2021.

[21] Wolfgang Dvořák, Anna Rapberger, Johannes Peter Wallner, and Stefan
Woltran. Aspartix-v19 - an answer-set programming based system for abstract
argumentation. In Foundations of Information and Knowledge Systems - 11th
International Symposium, pages 79–89. Springer, 2020.

[22] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Aspartix: Implementing ar-
gumentation frameworks using answer-set programming. In Logic Programming,
24th International Conference, pages 734–738. Springer, 2008.

[23] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming
encodings for argumentation frameworks. Argument and Computation 1, 2:147–
177, 2010.

[24] P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-
297):18, 1959.

51

[25] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set
programming. AI Magazine, 37(3):53–68, 2016.

[26] Martin Gebser, Roland Kaminski, Arne König, and Thorsten Schaub. Advances
in gringo series 3. In Logic Programming, 11th International Conference, pages
345–351. Springer, 2011.

[27] Martin Gebser, Benjamin Kaufmann, André Neumann, and Thorsten Schaub.
clasp: A conflict-driven answer set solver. In Lecture Notes in Computer Science,
pages 260–265. Springer, 2007.

[28] Martin Gebser, Thorsten Schaub, and Sven Thiele. Gringo: A new grounder for
answer set programming. In Lecture Notes in Computer Science, pages 266–271.
Springer, 2007.

[29] Souhila Kaci and Cristophe Labreuche. Arguing with valued preference relations.
In ECSQARU 11: Proceedings of the 11th European conference on Symbolic and
quantitative approaches to reasoning with uncertainty, pages 62–73. Springer,
2011.

[30] Benjamin Kaufmann, Nicola Leone, Simona Perri, and Thorsten Schaub.
Grounding and solving in answer set programming. AI Magazine, 37(3):25–32,
2016.

[31] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. The DLV system for knowledge represen-
tation and reasoning. ACM Transactions on Computational Logic 7, 3:499–562,
2006.

[32] Vladimir Lifschitz. Answer Set Programming, volume 3. Springer, 2019.

[33] Diego C. Martínez, Alejandro Javier García, and Guillermo Ricardo Simari. An
abstract argumentation framework with varied-strength attacks. In Priciples of
Knowledge Representation and Reasoning: Proceedings of the Eleventh Interna-
tional Conference, pages 135–144. AAAI Press, 2008.

[34] Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Ar-
tificial Intelligence, 173(9):901–934, 2009.

[35] Martin Možina, Jure Žabkar, and Ivan Bratko. Argument based machine learn-
ing. Artificial Intelligence, 171:922–937, 2007.

[36] Henry Prakken and Giovanni Sartor. Law and logic: A review from an argu-
mentation perspective. Artificial Intelligence, 227:214–245, 2015.

[37] Guido Tack. Constraint Propagation – Models, Techniques, Implementation.
Doctoral dissertation, Saarland University, 2009.

52

[38] Matthias Thimm and Serena Villata. The first international competition on
computational models of argumentation: Results and analysis. Artificial Intel-
ligence, 252:267–294, 2017.

[39] Frans H. Van Eemeren, Bart Garssen, Erik C.W. Krabbe, A. Francisca
Snoeck Henkemans, Bart Verheij, and Jean H.M. Wagemans. Classical back-
grounds. In Handbook of Argumentation Theory, pages 51–139. Springer, 2014.

[40] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440–442, 1998.

53

	Introduction
	Abstract Argumentation Frameworks
	Core Concepts
	Semantics for Abstract Argumentation Frameworks

	Weighted Argumentation Frameworks
	Core Concepts
	Semantics for Weighted Argumentation Frameworks

	Answer Set Programming
	Related Work
	Various Approaches for Weighted Argumentation Frameworks
	Aspartix
	ConArg

	ASP Encodings for Weighted Argumentation Frameworks
	Modeling Weighted Argumentation Frameworks
	Conflict-freeness
	Admissibility
	Complete Semantics
	Stable Semantics
	Discussion

	Evaluation of the ASP Implementation
	Generation of Test Cases
	Experimental Design
	Results
	Impact of the Model
	Impact of the Problem Type
	Impact of the Relaxations
	Impact of the Implementation

	Discussion

	Conclusion

