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Zusammenfassung

Features sind messbare Eigenschaften der Daten, die für die Lösung einer bestimm-
ten Aufgabe relevant sind. Wenn mehrere unabhängige Features die Aktivierung
eines einzelnen Neurons in einem neuronalen Netz erheblich beeinflussen, spricht
man von Polysemantik. In dieser Arbeit soll untersucht werden, welchen Einfluss
das Pruning, also das Entfernen von Parametern aus einem Modell, auf den Grad
der Polysemantik in neuronalen Netzen hat. Um diese Frage zu beantworten, wird
eine Methode zur Erzeugung von Daten mit bekannten Features vorgestellt und zur
Schaffung einer kontrollierten Umgebung verwendet, in der die Polysemantik ge-
messen werden kann. Ausgehend von einem großen Modell, das die Features aus-
reichend repräsentiert, werden verschiedene Pruning Ratios angewendet und das
geprunte Modell erneut trainiert. Die Polysemantik des geprunten Modells wird
anschließend gemessen. Unter der Annahme, dass die Anzahl der repräsentierten
Features beim Pruning erhalten bleibt, könnte man erwarten, dass der Grad der Po-
lysemantik zunimmt, da weniger Neuronen die gleiche Anzahl von Features reprä-
sentieren müssen. Darüber hinaus wird die Dropout-Technik im Zusammenhang
mit Pruning untersucht, da sie die Neuronen dazu anregt, sich an die mögliche Ab-
wesenheit anderer Neuronen anzupassen und Redundanz in Representationen der
Features zu fördern. Die Experimente dieser Arbeit konnten dabei zeigen, dass der
Trainingsprozess eine Anpassung der Polysemantik beinhaltet, wobei diese oft re-
duziert wird, bis sie auf ein bestimmtes Niveau konvergiert. Die Auswirkungen des
Pruning auf die Polysemantik waren nicht eindeutig, obwohl in einigen Fällen eine
Tendenz zur Abnahme der Polysemantik nach dem Pruning beobachtet wurde.

Abstract

Features are measurable properties of the data that are relevant to solving a certain
task. When multiple unrelated features significantly impact the activation of an in-
dividual neuron in a neural network, it is called polysemanticity. This thesis aims
to investigate the influence of pruning, meaning the removal of parameters from a
model, on the degree of polysemanticity in neural networks. To solve this question,
a method to generate toy data with known ground truth features is presented and
used to create a controlled environment in which polysemanticity can be measured.
Starting with a large model that sufficiently represents the ground truth features,
different pruning ratios are applied and the pruned model retrained. The polyse-
manticity in the retrained model is then measured. Assuming that the number of
represented features is preserved through pruning, the degree of polysemanticity
could be expected to increase since there are fewer neurons to represent the same
amount of features. In addition to that, the Dropout technique will be examined in
the context of pruning, as it encourages neurons to adapt to the potential absence
of other neurons and promotes redundancy in feature representations. The experi-
ments of this thesis could show that the training process includes an adjustment of
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polysemanticity, often reducing it until it converges to a certain level. The impact of
pruning on polysemanticity was not definitive, though a tendency for polyseman-
ticity to decrease after pruning was observed in some cases.
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1. Introduction

As described by Haykin [Hay98], a neural network is a mathematical function that
maps input data to output data through a series of interconnected layers. For-
mally, a k-layer neural network can be defined as a composition of functions f =
g ◦ fk ◦ . . . ◦ f1, where f : Rn 7→ Rp with input dimension n and output dimension
p. Each intermediate function fi with 0 ≤ i ≤ k corresponds to a hidden layer in the
network and can be defined as fi(x) = a(Wix+bi). Here, x is an input vector, Wi is a
weight matrix, bi is a bias vector and a is an activation function. The activation func-
tions within these layers can introduce non-linearity, enabling the network to model
complex relationships in the data. The final function g of the model serves as the
output layer and varies depending on the task, such as classification or regression.
The training process of a neural network involves optimizing the network’s weights
and biases, referred to as the parameters of the model, to minimize a specific loss
function indicating the model’s performance on training data.

For each problem, certain features define the ground truth. For now, features can
be understood as measurable properties of the data that are relevant to solving the
task [EHO+22]. Neurons within a network respond to these features, and when a
single neuron is influenced by multiple unrelated features, it exhibits polyseman-
ticity. This phenomenon complicates neural network interpretability, as such neu-
rons cannot be directly linked to single features or tasks [MK24]. Zhang et al. pro-
vide a detailed discussion of neural network interpretability [ZTLT21], which can
be roughly defined as the capacity to provide human-understandable explanations.
Neural network interpretability has become increasingly important for identifying
the causes of misbehavior in neural networks, understanding how they solve tasks,
and explaining the factors that define better performing networks. Understanding
and evaluating factors that influence polysemanticity is therefore essential for im-
proving interpretability. Additionally, research in both neuroscience and machine
learning has shown that polysemanticity can enhance performance in certain sce-
narios [LM20a, FMR16], further motivating its study.

An important aspect of a neural network model is its structure, defined by the
number of neurons on each layer. Pruning, the process of removing parameters
such as weights and biases, alters the structure of the network. A comprehensive
overview over pruning is given by Blalock et al. [BOFG20]. When pruning removes
entire neurons, the corresponding feature representations of these neurons are nat-
urally also lost. Retraining the model after pruning then allows it to adapt to the
modified structure. This process can potentially influence the degree of polyseman-
ticity, measured as the average number of features represented per neuron, by redis-
tributing or altering feature representations. This thesis investigates whether prun-
ing consistently impacts polysemanticity and whether trends can be observed as
the pruning ratio increases. The initial expectation was that polysemanticity would
increase as a result of pruning, since a reduced number of neurons would need to
compensate for the loss by representing the features of the pruned neurons too.
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To allow for precise measurements of polysemanticity, a method for generating
synthetic toy data with known ground truth features will be presented. This toy
data is a set of samples consisting of an input vector and an expected output vector
for the input. Using this method, controlled experimental scenarios will be created.
Each experiment begins with a large neural network model designed to sufficiently
represent the ground truth features. Pruning is then applied at varying ratios to
reduce the network’s size, and the pruned model is subsequently retrained to al-
low for adaptation. Neurons are removed by pruning those with the lowest mean
magnitude of input weights across the entire network. Throughout this process,
polysemanticity is measured both during training and after pruning to identify any
changes. Additionally, the Dropout technique [HSK+12] was studied for its poten-
tial impact on polysemanticity in the context of pruning. By randomly omitting neu-
rons during training, Dropout encourages redundancy in feature representations
and helps the network adapt to the absence of individual components.

The key findings of this thesis are as follows:

• The training process adjusts polysemanticity, often reducing it until it con-
verges to a stable level.

• The impact of pruning on polysemanticity was not definitive, though a ten-
dency for polysemanticity to decrease after pruning was observed in some
cases.

Section 2 introduces the key terminology and foundational literature relevant to
this study. Section 3 then outlines the experimental design, including the creation of
synthetic data and methodologies for measuring polysemanticity. Section 4 presents
results from six different experiments, which are subsequently analyzed and dis-
cussed in Section 5. Finally, Section 6 summarizes the findings and suggests direc-
tions for future research.

2. Literature review

To understand how pruning of artificial neural networks affects the degree of poly-
semanticity, a clear understanding of the underlying terminology and existing liter-
ature is needed. For this, definitions related to features, their neural representations
and the ground truth will first be established. Based on these definitions, the con-
cept of polysemanticity can be introduced. Next, an overview of various pruning
methods will be provided, followed by a description of the Dropout Technique as a
potentially significant approach in the context pruning and polysemanticity.

2.1. Features and their Representations

Intuitively we can think of a feature as a property of an object or phenomenon.
When using a neural network to solve a problem, we can see the observed situation
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of that problem as the phenomenon. For instance, when classifying handwritten
digits in images, a certain pixel being white could be a feature of this instance of
the phenomenon, the observed image. The example of handwritten digits will be
used throughout this section to explain the outlined concepts. A concrete example
of such a problem is the MNIST dataset [Den12] containing images of handwritten
digits with corresponding labels indicating the digit between 0 and 9. Features are
organized across various levels of a hierarchy, such as a circle at a specific position
being composed of multiple pixel-level features. We can therefore distinguish be-
tween features that depend on other features and those that are independent.

Definition 1 As defined by Bishop [Bis06], a feature is a measurable property of a phe-
nomenon.

The concepts of ground truth, feature structure, and feature representations are
still ambiguous, and a universal understanding of how to define these foundational
concepts has not yet been established [EHO+22, SSJ+23]. The following definitions
of these concepts have therefore been formulated specifically for this work based on
the fundamental definition of a feature provided above (see Definition 1). Hence,
they have been formulated solely to aid in understanding the design and rationale
behind the experiments in this thesis, reflecting a possible interpretation of these
concepts.

To describe the features that are present in an instance of a phenomenon, we
can make use of the following definitions inspired by the work of Elhage et al.
[EHO+22]:

Definition 2 (cf. [EHO+22]) A feature coefficient vector f ∈ [0, 1]n contains numerical
values of how prominently each represented feature is present in a given phenomenon. A
Feature Coefficient Space (FCS) F = (F1, . . . , Fn) is the vector space of the feature coeffi-
cient vectors for a given set of represented features.

So we can view a feature’s value in a feature coefficient vector as the “activation”
of that feature. When considering an individual pixel being white as a feature, the
corresponding value in a feature coefficient vector could be 1 if the pixel is white
and 0 if it is black.

For any neural network that is used to solve a specific problem, there is a range
of possible desired outputs which we can call the output domain. This means that
for all possible instances of a phenomenon, there exists an expected output that
the model should ideally generate. As defined in Section 1, the output domain is
generally O = Rp, though it may also be more constrained, such as O = {0, 1}p.
A feature is considered relevant for a given problem if it has any predictive power
over the output, such as a relevant feature for image classification. An important
requirement to construct a controlled environment in which we can evaluate the
degree of polysemanticity is the knowledge of all features that play a role in the
observed phenomenon. To construct a formal description of this requirement, we
will need to define further concepts.
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Definition 3 A Complete Feature Coefficient Space (CFCS) F̂ ̸= O is a FCS for which
every instance of the given phenomenon must contain a unique combination of the repre-
sented features. This means that a unique feature coefficient vector f ∈ F̂ corresponds to
each instance of the phenomenon. Moreover, the represented features in F̂ must be linearly
independent of one another. This means that no feature Fi ∈ F̂ may be a linear combination
of the other features, defined as Fi = ΣFj∈F̂\{Fi}cjFj with coefficients cj ∈ R.

Definition 3 also entails that there exists a mapping ω : F̂ 7→ O that correctly maps
each feature coefficient vector f ∈ F̂ to the expected output of the phenomenon
for which f indicates the prominence of the corresponding features in that phe-
nomenon. This is because the feature coefficient vectors in F̂ correspond to specific
instances of the phenomenon for all of which there exists a desired output. An ex-
ample of a CFCS would be the pixels’ grayscale values in the images for the classi-
fication of handwritten digits. A feature coefficient vector within that space would
correspond to a certain phenomenon, as it describes a specific image which again
corresponds to a desired output. It is also possible that some pixels are not part of
the CFCS since they are not relevant, meaning that all images would have the same
value for that pixel. Further CFCS could also consist of higher-level features such as
features that correspond to two or more pixels.

Definition 4 A Perfect Feature Coefficient Space (PFCS) F is the FCS that contains the
features of all possible CFCS of a problem. This means that the PFCS consists of all relevant
unique features of a phenomenon, meaning that a feature f ∈ F may not be expressed
as a linear transformation f = a · g + b for another feature g ∈ F\{f} and a, b ∈ R.
Consequently, the possible CFCS of a problem are all distinct combinations of these features
that fulfill the definition of a CFCS.

Therefore, a PFCS is also a CFCS and we can see it as the space of all relevant
features for a problem. So, overall each feature coefficient vector within the PFCS
corresponds with an individual instance of the given phenomenon. Additionally,
the instances of the phenomenon are already distinct based on their feature coeffi-
cient vector from any CFCS of the problem. In the context of the example of image
classification, the PFCS contains all relevant features such as individual pixels and
relevant shapes. In this case, the instance of the phenomenon is already distinct
based on its values for each individual CFCS, such as the pixels.

Moreover, there are certain mappings that describe an observed phenomenon:

Definition 5 An output mapping ω : F̂ 7→ O maps each feature coefficient vector f ∈ F̂
for a CFCS F̂ to the corresponding desired output y ∈ O of a given problem.

The perfect output mapping Ω : F 7→ O is the output mapping of the PFCS F .

Definition 6 An input mapping ι : F̂ 7→ I maps each feature coefficient vector f ∈ F̂ for
a CFCS F̂ to a corresponding input X ∈ I for an arbitrary input domain I.

A perfect input mapping I : F 7→ I is an input mapping of the PFCS F .
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The output domain stays consistent for all output mappings of a given problem,
regardless of the CFCS. The input domain, however, can vary between different
CFCS and even for a single CFCS as it only describes the perception of the given
features. Note that any input mapping can be converted into a perfect input map-
ping by extending the input domain to include an undefined value and by mapping
features that are not represented in the original mapping to this undefined value.
For instance, there is a clear mapping of which digit is written in a given image of
handwritten digits. However, the input mapping depends on the “perception” of
the image. It is possible that the neural network only gets a blurred version of the
image or that certain pixels are left out for some reason.

In addition to that, there can be mappings between features to represent interde-
pendencies:

Definition 7 A feature mapping ϕ : F1 7→ F2 maps each feature coefficient vector f ∈ F1

to a corresponding feature coefficient vector g ∈ F2.
The perfect feature mapping Φ : F 7→ F maps the independent feature coefficient vectors

f ∈ F ⊆ F to all feature coefficient vectors g ∈ F for the PFCS F . The FCS of independent
features F thereby is specific for each individual phenomenon.

Such a feature mapping means that the features from the FCS F1 depend on the
features from F2. In the context of images, this can be the dependency of a shape
as a feature on the individual pixels as features it consists of. Which features are
independent depends on the specific phenomenon, such as the individual pixels in
image classification.

If we construct a hierarchy of the dependencies between features, the desired out-
put of the given problem can be seen as a special FCS with each output dimension
as a feature that lies on the highest level of this hierarchy. Then again, the perfect
output mapping can be seen as a feature mapping from the PFCS to the output do-
main.

Finally, we can define the requirements of a controlled environment to evaluate
the degree of polysemanticity. The PFCS defines all relevant features for the ob-
served phenomenon and therefore needs to be known. Additionally, we need to
know the perfect input mapping that defines the input of the observed neural net-
work model. To have a fully controlled environment, we will also need to know
the perfect output mapping of the problem and the perfect feature mapping. The
ground truth of a given problem can be defined as follows:

Definition 8 The ground truth of a problem consists of:

• The ground truth features defined by the PFCS F

• The perfect feature mapping Φ

• The output domain O

• The perfect output mapping Ω
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Note that perfect input mappings are not part of the ground truth as they only
represent a perception of the ground truth features. Figure 1 illustrates a simplified
example of how the ground truth could be structured.

Figure 1: Illustration of the ground truth

Let us consider two possible definitions of when a neuron represent a feature:

• The neuron activates significantly if this feature is present, meaning that the
output of the neuron has a significant magnitude.

• The presence of this feature significantly impacts the neuron’s activation.

An example of a nonlinear activation function is a rectified linear unit (ReLU) func-
tion [NH10], which sets all negative values to zero. For the first definition, in case
of a ReLU activation function, this would mean that if the gradient of the activation
with respect to this feature is significantly negative, the neuron does not represent
this feature. This is because the feature results in the neuron being less likely to acti-
vate. This can again be illustrated by the example of image classification. If a certain
shape being present impacts a neuron’s activation so that it is significantly higher
than without the shape being present, this is a feature represented by the neuron.
However, if a shape being present results in a much lower activation of the neuron,
this would mean that the neuron does not significantly activate for the feature and
would therefore not be seen as represented by the first definition.

For the purpose of this work, the second definition will be used as we want to con-
sider a feature represented by a neuron if it has a significant impact on the neuron’s
response in any way:

Definition 9 Let n(x) be the activation function of the neuron n and m(f) be the mapping
from feature coefficient vector f = (f1, · · · , fn) to the input of the neuron. The neuron n
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represents feature fi with 1 ≤ i ≤ n if the absolute partial derivative | ∂
∂fi

n(m(f))| > θ for
a certain threshold θ ∈ R+ and some feature coefficient vector f ∈ F̂ with a CFCS F̂ .

2.2. Polysemanticity in Neural Networks

The central concept of this thesis is polysemanticity. Before evaluating polyseman-
ticity in neural networks, it is essential to understand what it is and why it occurs.
Additionally, it is necessary to understand why pruning is considered a potential
factor influencing polysemanticity and its significance in neural networks. To ad-
dress these points, this section will first provide an overview of polysemanticity,
followed by a discussion of its advantages in neural networks. The benefits of this
concept are observed not only in artificial neural networks but also in biological
ones, which will be briefly discussed as well. Finally, the foundational aspects of
measuring polysemanticity will be presented.

2.2.1. Overview

The following outline of polysemanticity will be based on the work of Marshall and
Kirchner [MK24]. They define polysemanticity as a neuron activating in response
to multiple unrelated features. In contrast, monosemanticity refers to a neuron acti-
vating for just one feature. As discussed in Section 2.1, a neuron represents a feature
if this feature significantly impacts the neuron’s output. In this context, we can
therefore see polysemanticity as a neuron representing multiple features. A term
frequently used in neuroscience to describe polysemanticity is "mixed selectivity."
From this, a similar definition of polysemanticity can be derived: polysemanticity
refers to neurons responding to multiple task-relevant variables, also known as fea-
tures [FMR16].

With more features than neurons per layer, the model is more likely to benefit
from polysemanticity as some features would otherwise be lost from the neural rep-
resentations. Polysemantic neurons allow models to make full use of the network’s
capacity by assigning multiple roles to individual neurons. Moreover, polyseman-
ticity is encouraged in a model exposed to moderate noise. This is because the rep-
resentations of features across the neurons can be expected to become more redun-
dant. These beneficial roles of polysemanticity will be discussed in more detail in
the following Section 2.2.2.

Marshall and Kirchner also highlight that polysemanticity is more likely to be
found particularly in early and late layers, while less redundant codes are employed
in intermediate layers.

2.2.2. The Importance of Polysemanticity

To illustrate the difference between monosemanticity and polysemanticity, we can
look at a simplified example of a neural network distinguishing between shapes
of different colors in images. Let there be two neurons, one of which activates for
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squares (S) and the other for the color red (R). The information implied by these
monosemantic neurons activating (1) or not (0) can be seen in the table of Figure 2.

Neuron 1 Activation Neuron 2 Activation Implied Information
0 0 ¬S ∧ ¬R
0 1 ¬S ∧R
1 0 S ∧ ¬R
1 1 S ∧R

Figure 2: Monosemantic Neurons

The monosemantic neurons can clearly distinguish between the two given fea-
tures. However, for the two polysemantic neurons, as shown in the table in Figure
3, the information represented is more complex and higher-dimensional compared
to the monosemantic neurons. Here, one neuron activates for triangles (T) and red,
while the other activates for squares and red.

Neuron 1 Activation Neuron 2 Activation Implied Information
0 0 ¬T ∧ ¬S ∧ ¬R
0 1 ¬T ∧ S ∧ ¬R
1 0 T ∧ ¬S ∧ ¬R
1 1 R ∨ S ∧ T

Figure 3: Polysemantic Neurons

This example highlights a key difference between neurons: monosemantic neu-
rons are better at distinguishing a highly selective set of classes, whereas polyseman-
tic neurons offer less selective, higher dimensional information. In this scenario with
only two neurons, the monosemantic network provided two-dimensional informa-
tion, whereas the polysemantic network was able to convey three-dimensional in-
formation. High-dimensionality is not inherently beneficial; however, as will now
be discussed based on findings from the literature, it facilitates significant advan-
tages in neural networks.

In most scenarios, the training and test data contains noise and various pertur-
bations. As a result, the model is required to implement redundancies and error-
correcting measures to ensure robustness. Polysemantic neurons enable the model
to use additional dimensions to redundantly encode specific features across mul-
tiple neurons. The model thus avoids the need for entirely redundant, monose-
mantic neurons that would consume significant network capacity. This is why, as
mentioned in the previous Section 2.2.1, neural networks tend to introduce poly-
semanticity when exposed to moderate noise. Redundancy is a way of handling
noise and it is reflected in the distribution of specific features across multiple neu-
rons. This redundancy, while preserving the overall number of represented features,
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increases the number of features represented per neuron and therefore polyseman-
ticity [MK24].

Leavitt and Morcos provide further findings on the effects of polysemanticity on
robustness to perturbations [LM20b]. In this context, the term "class selectivity"
is used, which is commonly found in neuroscience. Low class selectivity, or mixed
selectivity, refer to the same concept as polysemanticity and are therefore used inter-
changeably [FMR16]. They found that mean class selectivity predicts vulnerability
to naturalistic corruptions. Specifically, higher levels of polysemanticity decreased
vulnerability to nearly all tested corruptions across multiple scenarios. However,
the results also indicated that polysemanticity increases vulnerability to gradient-
based adversarial attacks [LM20b].

Besides promoting robustness to perturbations, polysemanticity has also been
suggested to have a positive impact on the overall performance of a neural net-
work. Leavitt and Morcos could show that regularizing against class selectivity,
thus increasing polysemanticity, improved accuracy by over 2% in one scenario and
did not negatively affect performance when reducing class selectivity by significant
factors in another scenario. Increasing class selectivity, however, has been shown to
significantly decrease test accuracy across all tested scenarios [LM20a].

To further understand the benefits of mixed selectivity, we can turn to the neu-
roscience literature. Fusi et al. evaluate possible reasons behind mixed selectivity
occurring in biological neural networks and the following outline of the biological
nature of class selectivity will be based on their work [FMR16]. They highlight that
many neurons, especially in higher-order cortex, seem to implement mixed selectiv-
ity. An example of this is the occurrence of mixed selectivity in the hippocampus,
where single neurons represent multiple contextual and episodic features. They
argue that mixed selectivity may be crucial for complex behavior and higher cogni-
tion. Experiments both in rodents as well as primates suggest that mixed selectivity
plays an important role in representing information in a way that can be used to
generate desired behavior. This is indicated by the fact that dimensionality collapses
in the presence of errors, suggesting that high dimensionality may be essential for
successfully completing a task.

As mixed selectivity neurons behave consistently in the same context, but their se-
lectivity is highly context-dependent, their activations are not interpretable on their
own. Rather, the meaning of their activations emerges from the context provided by
other neuron’s activations. As a measure of how useful these activations are for fur-
ther processing structures, Fusi et al. propose determining whether a linear readout
can extract the relevant information. The advantage of nonlinear mixed selectiv-
ity can then be illustrated by Figure 4 [FMR16]. Nonlinear mixed selectivity refers
to a neuron’s activation being related to a nonlinear combination of multiple fea-
tures. The axes in Figure 4a each represent the activation for one of three different
neurons and the spheres show the neuron’s activations for a certain input. In this in-
stance, the inputs consist of sound and visual contrast. Let the activation of Neuron
1 increase linearly with sound intensity, while the activation of Neuron 2 increases
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linearly with visual contrast. Neuron 3 may correspond to either of these factors
or represent a linear combination of both. As the neuron’s activations have a linear
relationship to the features, the spheres in Figure 4a are on a plane. The spheres
belong to one of the two task-relevant classes, marked as yellow or red. As the yel-
low and red spheres cannot be separated by a plane in this case, a linear readout
could not extract the relevant information. If Neuron 3, on the other hand, exhibits
nonlinear mixed selectivity, the neural representations turn three-dimensional and
could consequently create the vertices of a tetrahedron. The classes would then be
separable.

(a) Neurons without nonlinear mixed se-
lectivity: The spheres lie on a plane
and the neural representations are
thus 2D (low-dimensional). It is not
possible to find a plane that separates
yellow spheres from red ones (low
separability).

(b) Neurons with nonlinear mixed selec-
tivity (in Neuron 3): The spheres are
the vertices of a tetrahedron and the
neural representations are hence 3D
(high-dimensional). It is therefore
possible to find a plane that separates
yellow spheres from red ones (high
separability).

Figure 4: Each axis corresponds to the activation of a neuron and each sphere rep-
resents the activity of the three neurons within the space of activations.
The colors red and yellow show the classes of the spheres that need to be
distinguished [FMR16].

Fusi et al. highlight that the number of possible classifications by a linear read-
out grows exponentially with the dimensionality of the neural representations. To
achieve high-dimensionality, nonlinear mixed selectivity and diversity is necessary,
which means that the mixed selectivity neurons should each respond to different
combinations of feature values. In contrast, it is also pointed out that high dimen-
sionality is not always beneficial. Especially classification tasks often require selec-
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tive representation of information that is relevant for the discrimination between
distinct classes. This can be seen in the example described earlier in Figures 2 and 3.
If the objective is to identify the presence of a square and the color red in an image,
the monosemantic model performs the task most effectively.

2.2.3. Measuring Polysemanticity

The literature on polysemanticity offers several metrics for its measurement, each
shaped by the adopted definitions and interpretations of underlying concepts such
as features and ground truth. There are a number of approaches that focus on mea-
suring polysemanticity when the features are known. In this section, some of these
metrics will be reviewed. The described concepts will introduce some of the foun-
dational ideas underlying the metrics used in the experiments of this thesis.

Feature Capacity
Scherlis et al. [SSJ+23] propose a method for measuring polysemanticity by ex-

amining the capacity allocated to each feature. Here, capacity refers to the fraction of
an embedding dimension assigned to a feature, with values ranging from 0 to 1 as
defined by the authors. A feature with a capacity of 1 occupies a full dimension in
the embedding space, while a feature with fractional capacity is polysemantic, i.e. it
shares its dimension with other features. A capacity of 0 indicates no representation
within the embedding.

Described in more detail [SSJ+23], consider a model composed of linear layers
followed by nonlinear activation functions. Each layer’s linear transformation pro-
duces an embedding vector e from the input vector x, and applying the element-
wise nonlinear function yields an activation vector h. For instance, the linear trans-
formation e = W · x could be paired with a ReLU function h = ReLU(e), where
W ∈ Rd×p, x ∈ Rp and e, h ∈ Rd. Each dimension in this nonlinear layer corre-
sponds to a neuron. The authors assume that each dimension of the input vector x
represents a distinct feature, such that each input feature is uniquely assigned to a
specific dimension in the input space. The embedding vector for feature 1 ≤ i ≤ p is
represented by the i-th column of W . Therefore, let W·,i ∈ Rd denote the embedding
vector for feature i. The capacity for feature i can then be defined as

Ci =
(W·,i ·W·,i)

2

Σp
j=1(W·,i ·W·,j)2

Thus, Ci describes the fraction of a dimension allocated to feature i. Ci lies be-
tween 0 and 1 and in case all elements of W·,i are 0, we can set Ci = 0. The nominator
represents the size of the embedding of feature i, while the denominator captures the
influence of other features on the embedding, tracking their interference [SSJ+23].

The key distinction between the metric proposed by Scherlis et al. [SSJ+23] and
the context of this thesis lies in the assumption that each feature is allocated a specific
dimension in the input space. However, in this thesis, we assume that there is some
mapping between features and the input. If we see this input mapping as a part
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of the model, functioning as the first layer, the input will consist of the features.
While this would validate the assumption, it is also important to note that this metric
measures capacity for a specific layer rather than for the model as a whole.

Monosemanticity
Jermyn et al. [JSH22] propose a measure of a neuron’s monosemanticity based on

its activations in relation to the features. Since monosemanticity represents a state
opposite to polysemanticity, the reciprocal of this measure can serve as a foundation
for a polysemanticity metric. To obtain an approximate measure of how monose-
mantic a neuron i is, the following formula is presented [JSH22]:

ri =
maxj(hi(Fj))

δ +Σjmax(0, hi(Fj))

Here, Fj ∈ F̂ for a CFCS F̂ represents the feature coefficient vector with feature j
active at unit strength while all other features remain inactive. In this context, this
would mean that the j-th value is set to 1 and all other values are 0. The term hi(Fj)
then denotes the activation of neuron i in response to the feature coefficient vector
Fj . Hence, the nominator is the activation of neuron i in response to the feature
that activates it most strongly. The denominator represents the sum of the neuron’s
activations across all features, with a small constant δ = 10−10 added to prevent
the measure from becoming undefined for a neuron that is inactive for all features.
Moreover, only positive activation values are included in the sum [JSH22].

This metric considers a feature to be represented by a neuron if the neuron acti-
vates in the presence of that feature. However, as discussed in Section 2.1, within
this thesis we see a feature as represented by a neuron if it significantly influences
the neuron’s activation. This requires examining the absolute gradient of the neu-
ron with respect to the feature coefficient vectors, as the absolute gradient reflects
the extent to which individual features impact the neuron’s activation. The resulting
metric to measure polysemanticity in the context of this thesis will be presented in
more detail in Section 3.3.

Total Feature Dimensionality
When measuring polysemanticity in a model, it is essential to consider it in the

context of how many ground truth features the model represents in total. For exam-
ple, if a model represents only 3 features in total with an average polysemanticity
of 2, meaning each neuron represents 2 features on average, this differs significantly
from a model that represents 100 ground truth features with the same polysemantic-
ity level. To reflect this distinction, the polysemanticity of the second model should
be considered as representing a higher level in some sense.

As stated earlier in this section, Scherlis et al. [SSJ+23] examine polysemanticity
through the lens of capacity, defined as the fraction of an embedding dimension
allocated to each feature. Originally, Elhage et al. [EHO+22] introduced this concept
under the term feature dimensionality. In this thesis, we can approach it from a
different angle, adapting Elhage et al.’s concept. Aligned with the understanding of
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the ground truth presented in this thesis, feature dimensionality can be defined as
outlined in Definition 10.

Definition 10 (cf. [EHO+22]) Let a neuron defined by the activation function n : F 7→ R
and a feature fi ∈ F with i ∈ N be given for the PFCS F . The feature dimensionality

Dn(i) ∈ [0, 1] of feature fi within the given neuron n is defined as Dn(i) =
| ∂
∂fi

n|

Σfj∈F | ∂
∂fj

n| .

The feature dimensionality can be understood as the fractional contribution of a
specific feature to a neuron’s output. In Definition 10, the numerator is the absolute
partial derivative of the neuron’s activation function concerning that feature. The
denominator is the sum of all absolute partial derivatives for all features in that
neuron.

The aim for the experiments of this thesis is to establish a metric that indicates
the fraction of the ground truth features represented by the model. To quantify the
extent to which a feature is represented by the model as a whole, we can sum the
feature dimensionality across all neurons for that specific feature. To establish such
a metric, the extent of representation for any feature should be capped at 1, disre-
garding any redundancies. The total feature dimensionality will reflect the propor-
tion of ground truth features represented by the model. It is defined as the sum of
the representation extent of each feature divided by the total number of features, as
outlined in Definition 11.

Definition 11 The total feature dimensionality of a model consisting of m neurons with
the set of activation functions per neuron N = {ni : F 7→ R|i = 1, . . . ,m} is defined as
D =

Σfi∈Fmin(Σn∈NDn(i),1)

|F| with the PFCS F .

This can be illustrated with a simple example of a neural network with 5 neurons
and a ground truth containing 5 features. If each neuron of the neural network rep-
resents one distinct features, all features are fully represented and the total feature
dimensionality would be D = 1. If, on the other hand, there are 6 features and
3 neurons each representing two distinct features, each feature would not be fully
represented by a neuron and would share dimensions. This would result in a total
feature dimensionality of D = 0.5.

Integrated Gradients
The approximation of gradients plays an important role when measuring polyse-

manticity in neural networks because they can describe the contribution of an input
dimension to the output. As described in Section 2.1, a feature is represented by
a neuron if it significantly impacts the neuron’s activation. Therefore, the gradi-
ent of the neuron’s activation with respect to the features describes this underlying
concept of polysemanticity. For this purpose, the Integrated Gradients method will
now be introduced based on its description by Sundararajan et al. [STY17].

Integrated Gradients is an attribution method that is used to approximate the
contribution of a dimension in the input to the output of a function F (x). In our
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context, the term ’integrated gradient’ actually refers to the approximated integrated
gradient with m interpolation steps. Integrated gradients require a baseline, which
can be defined as an input without the presence of features. The gradients of F (x)
are summed along the path between this baseline and an input vector x where a
feature is present for a specified number of interpolation steps.

Definition 12 [STY17] The integrated gradient of a function F : Rn 7→ Rp along the ith

dimension between baseline x′ ∈ Rn and input vector x ∈ Rn with m > 0 interpolation
steps and 1 ≤ i ≤ n can be defined as follows:

IGi(x) = (xi − x′i) · Σm
k=1

∂F (x′ + k
m · (x− x′))

∂xi
· 1
m

.

In the formula for integrated gradients, at each interpolation step k between base-
line vector x′ and input vector x, the partial derivative of the i-th dimension of F is
computed. The mean of these partial derivatives is then calculated, which is multi-
plied by the distance between the baseline and the input vector in the i-th dimen-
sion. This yields the approximate contribution of the i-th dimension of the input
vector x to the output in F .

Integrated gradients fulfill certain desirable properties that we require from an
attribution method. A concise outline of how we can understand these properties,
as described by Sundararajan et al. [STY17] in more detail, is as follows:

• Sensitivity: If the prediction varies for each baseline and input that differ by
a specific feature, that feature should have a non-zero attribution. If, on the
other hand, the function F (x) does not depend on a specific feature, its attri-
bution should be zero.

• Implementation Invariance: If two implementations of a network result in
the same output for all inputs, the attribution values should be accordingly
identical.

A simple example can be given with three input dimensions x = (x1, x2, x3) and
f(x) = 2·x1+x3 as the considered function of this example. The baseline is set to the
vector x′ = (0, 0, 0) with all features being absent. To measure the attribution of x1,
this feature will be set to 1 with the remaining features remaining at 0. As a result,
the input vector is (1, 0, 0). Since the considered function is linear and the gradient
does not change at any point, the formula of the integrated gradient in Definition
12 will result in the same value regardless of the number of interpolation steps. The
integrated gradient of f(x) along the first dimension between x′ and x is 2. This
fulfills the property of sensitivity. The feature x1 has a non-zero attribution as the
output changes between baseline x′ and x. Considering x2 in the same way would
result in an attribution of 0, again according to the property of sensitivity.

To demonstrate implementation invariance, we can look at two functions f1(x) =
h1(g1(x)) and f2(x) = h2(g2(x)) with the same input dimensions as above. Let
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g1(x) = (2 · x1, x3) and h1(y) = y1 + y2. Moreover, let g2(x) = x and h2(y) =
2 · y1 + y3. Both functions will result in f1(x) = f2(x) = 2 · x1 + x3 but have different
implementations. Regardless of the difference in the implementation, both functions
will also result in the same attributions for the features x1, x2 and x3.

2.3. Pruning of Neural Networks

In this section, the current state of pruning will be presented to give an overview of
this method based on the work of Blalockto et al. [BOFG20].

Pruning means removing parameters from a neural network by either setting
them to zero or fully omitting them from the model. In both cases, these pruned
parameters no longer contribute to the model’s operations, including during train-
ing and predictions. Pruning typically starts with a large, high-accuracy network
and can serve different purposes. It can reduce overfitting in an overly large net-
work and create a more efficient model that requires fewer computational resources
while retaining most of its original accuracy [BOFG20, LDS89, HS92].

Most pruning strategies start by training the initial model until the accuracy con-
verges. Subsequently, parameters or structural elements are pruned based on a
score. To reduce the loss of accuracy, The pruned model is then fine-tuned, mean-
ing it is trained again. This process can optionally be repeated several times. As
a result, the parameters of the new model may differ from those in the original,
with a binary mask setting certain parameters to zero. Instead of applying a mask,
parameters may also be removed entirely.

Pruning strategies can be distinguished based on several key characteristics:

• Unstructured pruning: Individual parameters are pruned, which results in a
sparse neural network.

Structured pruning: Certain groups of parameters, such as entire neurons, are
removed.

• Options for scoring parameters include using their absolute values, trained
importance coefficients, or contribution to the network’s activations or gradi-
ents.

• The scores can be compared locally, resulting in independently pruning certain
subcomponents of the network. When considering scores globally, all scores
are compared to one another when pruning.

• The amount of parameters pruned per step can be a fixed fraction of the net-
work or based on a more complex scheduling function. Otherwise, the desired
amount of parameters can also be pruned in one step.

• Typically, the weights of the initial model will also be used as a starting point
of the fine-tuning process. Moreover, it is possible for the weights to be com-
pletely reinitialized.
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Blalockto et al. [BOFG20] note that global pruning tends to outperform local
pruning. Moreover, they highlight that magnitude-based approaches are a com-
mon baseline in the literature and often shown to be competitive with more com-
plex strategies. One example for this is Global Magnitude Pruning [FC19], where the
weights with the lowest absolute value are pruned in the network. In the experi-
ments of this thesis, this method will be applied as structured pruning by removing
neurons with the lowest mean of absolute weight values.

2.4. The Dropout Technique

The Dropout technique will now be presented based the corresponding work by
Hinton et al. [HSK+12]. It aims to prevent overfitting in neural networks by ran-
domly omitting a specific fraction of hidden units, meaning neurons on hidden lay-
ers, during each training case. The issue of overfitting occurs when neurons are
tuned to make accurate predictions on the training data but fail to generalize to test
cases. Dropout addresses this by randomly omitting each hidden unit with a prob-
ability of 0.5. To avoid too large weights, an upper limit is set on the L2 norm of the
incoming weights for each hidden unit. The L2 norm of a vector x ∈ Rn is defined
as ||x||2 =

√
x · x. If this limit is exceeded, the weights are renormalized through

division. When testing the network, all hidden units are used, but their weights
are halved to reflect the increased number of active units compared to the training
phase. Hinton et al. highlight that applying Dropout to all hidden layers in fully
connected networks outperforms using Dropout in only one layer.

This technique has the effect that a hidden unit cannot rely on other hidden units
being present. As a result, instead of forming complex co-adaptations based on
the training data, hidden units learn to identify relevant features with better gener-
alization performance [HSK+12]. This improvement in extracting relevant features
makes the technique interesting when evaluating feature representations in neurons
and assessing the impact of pruning on these representations. Therefore, the ques-
tion arises as to how the Dropout technique affects the degree of polysemanticity in
neural networks, both before and after pruning.

3. Experimental Setup and Methodology

The central research question of this thesis is whether a correlation exists between
the pruning ratio applied to a model and the resulting degree of polysemanticity
observed after retraining. To investigate this, experiments will be conducted across
several scenarios. Here, models will be trained to solve a regression task, mean-
ing to predict numeric values represented by labels. In each scenario, an initial
baseline model will be constructed with a sufficient number of neurons to mini-
mize polysemanticity (see Section 3.4 for further details). The baseline models will
then undergo pruning and retraining according to a standardized procedure that is
consistent across all experiments, as described in Section 3.5. The degree of polyse-
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manticity will be measured for varying pruning ratios, allowing for an evaluation
of any correlation based on the metrics described in Section 3.3.

The experimental scenarios can be categorized based on the extent of available
knowledge about the ground truth. In a controlled environment, the ground truth
of the problem, including the relationships between features and inputs, is known.
This setup allows for accurate measurement of polysemanticity, as all relevant knowl-
edge of the features is available. A controlled environment is ideal for establishing
an initial understanding of the potential correlation between pruning and polyse-
manticity, minimizing the impact of unforeseen or random factors. The construction
of such a controlled environment for the experiments is outlined in Section 3.2.

Within a controlled environment, scenarios can further be distinguished as either
linear or nonlinear. In a linear scenario, all mappings between features, inputs and
outputs are linear. Accordingly, the activation functions in all models are linear. In
the nonlinear scenarios of the following experiments, the activation functions will
be ReLU functions [NH10]. The nonlinear scenario more closely reflects most real-
world applications of neural networks and is therefore more meaningful.

In contrast, an uncontrolled environment lacks prior knowledge of the ground
truth, representing a more realistic scenario where such knowledge is typically un-
available. While this setup reflects real-world conditions more closely, it introduces
challenges in measuring polysemanticity with precision. Since such experiments
exceed the scope of this thesis, further research is needed in this area.

The source code for this thesis, including the generation of toy data and measure-
ment of polysemanticity, can be found in this repository. Additionally, it contains the
code of the experiments as examples.

3.1. Training Process

The training processes within the experiments use a standardized approach with
the Adam (Adaptive Moment Estimation) optimizer [KB17] and Mean Squared Er-
ror (MSE) loss function. This process enables consistent comparisons across experi-
ments and is outlined in this section.

First, the toy dataset is split into 70% training and 30% testing data. This ensures
we have enough data to train the model and evaluate its performance on new data.
The models are implemented in PyTorch, a popular deep learning framework in
Python [PGM+19].

The training process is iterative, involving multiple epochs during which the
model learns from the entire training dataset. The number of epochs is determined
based on the context of each individual experimental scenario to ensure that the
model’s loss converges. The selected number of epochs will be mentioned for each
experiment in the corresponding results section and will remain consistent through-
out the entire scenario. Moreover, a batch size of 64 is used, meaning the model
processes 64 samples at once before updating its parameters.

The Mean Squared Error serves as the loss function as it is well-suited for regres-
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sion tasks. MSE computes the average squared difference between the predicted
values and the actual values, which allows for a clear evaluation of the model’s
prediction accuracy of the numerical values.

To reduce this loss function, the Adam optimizer [KB17] will be used. It is a
well-known iterative algorithm created by Diederik P. Kingma and Jimmy Ba. The
algorithm combines the advantages of the two optimization techniques RMSprop
and Stochastic Gradient Descent (SGD) with momentum. For a detailed overview
of these techniques, see the work by Ruder [Rud17]. Adam adjusts the learning rate
using the squared gradients, similar to RMSprop, while also applying momentum
by using the moving average of the gradients instead of just the gradients them-
selves, as in SGD with momentum. In the following experiments, an initial learning
rate of 0.001 will always be used.

Overall, the training consists of processing all batches in each epoch to gradually
improve the model’s performance. For each batch, the model generates predictions
through a forward pass and computes the loss. Then, backpropagation determines
the gradients of the loss, which the Adam optimizer uses to adjust the model’s pa-
rameters and reduce the loss.

3.2. Generating Toy Data with known Ground Truth Features

To be able to measure the degree of polysemanticity in a neuronal network, we need
to be able to define which features are present in an input vector. For the toy data
experiments of this thesis, we construct a fully controlled setup where the whole
ground truth and perfect input mapping, as defined in Section 2.1, are known. In
this case, ’toy data experiment’ means that the problem is not grounded in a real-
world scenario and has no meaning. The setup will consist of two neural network
models.

3.2.1. Feature Model

The first model, called Feature Model, will define the ground truth of our problem.
The neurons on the hidden layers of this model can be seen as the features of the
PFCS and their activations define the feature coefficient vector for any given sample.
The output of this model also represents the desired output, or labels, of the toy data
and the activation functions of the hidden layers are the feature mappings between
all features of the problem. The formal definition of a Feature Model is as follows:

Definition 13 For the ground truth G = (F ,Φ,O,Ω) of a given problem, the correspond-
ing Feature Model FM : I 7→ O is a neural network consisting of the activation functions
per layer (a0, · · · , al, ω) with FM = ω ◦ am ◦ · · · ◦ a0. This Feature Model fulfills the
following characteristics:

• With F̂i denoting the codomain of layer 0 ≤ i ≤ l, it is also a CFCS of the problem. The
neuron activations fi ∈ F̂i are consequently feature coefficient vectors. In addition to
that, the domain of the Feature Model I is also a CFCS (see Definition 3).

18



• Based on Definition 4, the PFCS consists of F = I∪ F̂0∪· · ·∪ F̂l. Hence, the neurons
of the Feature Model can be understood as the features of the ground truth.

• The perfect feature mapping is Φ : I 7→ F , where the features from the input are
independent. For this mapping, the feature coefficient vector of layer k can be defined
as fk = (ak ◦ · · · ◦ a1)(f0) with f0 ∈ F̂0.

• The output domain O of the ground truth is also the codomain of the Feature Model.
So the output of the Feature Model defines the desired output corresponding to each
instance of the phenomenon. Note that, as outlined in Section 2.1, the instances of a
phenomenon consist of the feature coefficient vector f ∈ F defined by the activations
of the Feature Model, excluding the output.

• The perfect output mapping Ω maps the feature coefficient vector fk ∈ F̂k of each layer
0 ≤ k ≤ l of the model to the corresponding output ωk(fk) = (ω ◦ · · · ◦ ak+1)(fk).

All in all, the Feature Model describes an ideal mathematical model of the ground
truth which maps the features to their corresponding desired output and describes
interdependencies between features through the hierarchical structure defined by
the layers of the model. This can be illustrated based on the example of image classi-
fication of handwritten digits. The first layer being the lowest in the hierarchy could
correspond to the grayscale levels between 0 (black) and 255 (white) of each pixel
in an image. The neuron activations on higher layers of the Feature Model would
then correspond to higher-order features, such as edges at certain positions in the
image. Note that any given instance of the phenomenon has a unique combination
of values on each layer of the Feature Model. In the context of this example, each
instance consists of a unique image with a distinct combination of pixels. However,
not only individual pixels but also the combination of relevant higher-order features
on each layer are unique for each image. To put it simple, it can be described as fol-
lows. Assuming there are an even number of pixels on each horizontal layer of the
image, higher-order features could describe the horizontally neighboring pairs of
pixels. Starting with the grayscale value of the left pixel l and the right value r, the
higher-order feature could be f = 1000 · l + r. For instance, l = 155 and r = 30
would result in f = 155030. Each instance of the phenomenon would also have a
distinct combination of such feature values. This, however, is oversimplified since
higher-order features are likely much more complex and not all possible combina-
tions of such values would be relevant for a given phenomenon. Since the Feature
Models used in the following experiments are not meant to describe real problems,
they fulfill the given requirements of a ground truth by definition, defining their
own synthetic problem.

Furthermore, the interdependencies between the features are described by the
activation functions of the model which define how the features on each layer can
be obtained based on the features of the previous layer. Finally, the output of the
Feature Model would be values between 0 and 9 classifying the handwritten digit
as the desired output.
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For a realistic Feature Model, the number of features per layer decreases, which
can be illustrated by the example of image classification. To classify handwritten
digits, there are more small features that are relevant to the problem compared to
larger features. In this case, most pixels are significant for the classification, while
only a few specific shapes need to be considered when identifying digits.

The hidden layer architecture of our Feature Models is generated by iteratively
adding a layer with a random number of neurons within the range defined by
the lower bound lower_bound and the upper bound upper_bound. This process
takes three parameters that define the minimum min_neurons and maximum size
max_neurons of the hidden layers, and the number of features num_features for
the Feature Model. The upper bound is initialized to max_neurons, while the lower
bound is set to ⌊max_neurons+min_neurons

2 ⌋. With the number of remaining features
that need to be placed as neurons in the hidden layers stored in remaining_features,
the process is described by Algorithm 1. The algorithm will return a tuple of hid-
den layer sizes for the Feature Model based on the given parameters. It is possible
that a given layer size may fall below the minimum required number of neurons;
however, the algorithm will largely generate hidden layer structures that fulfill the
desired properties while allowing for some randomness.

After the architecture of the Feature Model has been defined, the weights and
biases are set, which determine the feature and output mappings of the ground
truth. This will be done based on an importance function P , which returns random
values x ∈ R. In addition to that, any value x generated by P with an absolute
value |x| < ρ for a threshold ρ ∈ R+ will be set to 0. The weights of the Feature
Model will be assigned the values derived from the importance function P , taking
the threshold ρ into account. This may lead to some neurons having either no non-
zero input weights or just one, resulting in meaningless features or those that are
merely transformations of others. To prevent this, neurons with fewer than two
non-zero input weights will be assigned additional weights based on the importance
function without applying the threshold ρ, ensuring at least two non-zero weights.
The biases of the Feature Model can then be set based on the expected weighted
input of the neurons.

For the experiments of this thesis, the weights will be set based on a uniformly
distributed importance function with values between −1 and 1. This will be done
with the built-in function torch.rand of PyTorch [PGM+19]. In the context of this
thesis, it is sufficient to know that this function returns random values between 0
and 1, where it is equally likely for any value within that range to occur. To get
values between −1 and 1, the result will then be multiplied by 2 and 1 will be sub-
tracted, resulting in the random value x = 2 · torch.rand() − 1. Moreover, we aim
for feature coefficient vectors with a mean value of 0.5, which means that the input
and output values of the neurons in the Feature Model should also have a mean of
0.5. In this case, the expected input vector µ of the layer will consist entirely of 0.5
values. For a given layer with weights W , the biases are set to b = 0.5 −Wµ. Here,
0.5 is a vector of the same dimensions as Wµ with all entries equal to 0.5. This will
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Algorithm 1 Feature Model: Hidden Layer Generation

Require: min_neurons,max_neurons, num_features ∈ N
Ensure: hidden_layers ∈ Nd for some d ∈ N
hidden_layers← ∅
remaining_features← num_features
upper_bound← max_neurons
lower_bound← ⌊max_neurons+min_neurons

2 ⌋
while remaining_features > 0 do

if remaining_features ≥ min_neurons then
neurons← random(lower_bound,min(remaining_features, upper_bound))
hidden_layers← hidden_layers ∪ neurons
remaining_features← remaining_features− neurons

else
for layer_size in hidden_layers do

added_neurons ← min(max_neurons − layer_size, remaining_features)
layer_size← layer_size+ added_neurons
remaining_features← remaining_features− added_neurons
if remaining_features = 0 then

break
end if

end for
if remaining_features > 0 then

hidden_layers← hidden_layers ∪ remaining_features
end if

end if
if remaining_features ≤ upper_bound then

upper_bound← lower_bound
lower_bound← ⌊min_neurons+upper_bound

2 ⌋
end if

end while
return hidden_layers
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result in an expected output per neuron of 0.5.
The Feature Model also provides a function to calculate an approximate input

vector for the Feature Model that will result in the neuron activations being close to
a given target feature coefficient vector. This will be done by minimizing the MSE
loss between the activations and the target vector, starting with a random input
vector and using the Adam optimizer [KB17]. Because of the declining layer size in
the Feature Model, this might cause the algorithm to only find the optimum that sets
the input vector to the corresponding first feature coefficients in the target vector. To
avoid this, we will not consider the input as relevant features and only look at the
features corresponding to the hidden layers. Let F̂ denote this relevant FCS. While
the activation functions of the hidden layers may be nonlinear, the input layer will
retain a linear activation function. The input vector of a Feature Model that produces
hidden layer activations matching a certain target vector is called a seed vector.

3.2.2. Autoencoder

The second model of the setup will define how the features are mapped to the ac-
tual input of the data. An assumption that can be made about the relationship be-
tween features and the input is that there are more features than input dimensions
[EHO+22, SBM22]. Hence, a simple input mapping might compress these features
to form the input. To achieve this, a straightforward approach can be used: an en-
coder as part of an autoencoder, which takes a feature coefficient vector f and maps
it to the corresponding input within the input domain I.

Based on the work by Bank et al. [BKG21], an autoencoder, in this context, can
be described as a neural network that is trained to reconstruct its input. An autoen-
coder consists of two main components: the encoder and the decoder. The encoder
first compresses the input into a lower-dimensional, meaningful representation. The
decoder then attempts to reconstruct the original input from this compressed rep-
resentation. Autoencoders are trained using unsupervised learning, so no labels
are required and training is based solely on input samples. The network learns
by minimizing the reconstruction loss, which measures the difference between the
input and output, indicating how accurately the decoder has reconstructed the in-
put. Once training is complete, the encoder serves as the component responsible for
compressing new data.

The encoder will consist of an input layer, a hidden layer containing ⌊ |f |2 ⌋ neu-
rons, and an output layer. For training purposes, the model will have an attached
decoder that mirrors the structure of the encoder. During training, the reconstruc-
tion loss, defined as the MSE between the encoder’s input and the decoder’s output,
is minimized using the Adam optimizer [KB17], as described in Section 3.1. The key
difference is, as described above, that the desired output for a given input sample is
the input itself. The input samples in each experimental scenario will consist of all
generated feature coefficient vectors of the dataset. Thus, the encoder ideally learns
to compress the scenario-specific features into the input as meaningful as possible.
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3.2.3. Toy Data Generation

To generate toy data, the algorithm uses a list of sparsity values, where each value
s ∈ [0, 1] defines the probability of the corresponding feature being present in a sam-
ple as p = 1− s. Based on this list, random feature coefficient vectors are generated
with coefficients between 0 and 1 for features that occur in a sample. Afterward, the
corresponding seed vectors for the generated feature coefficient vectors will be cal-
culated. With these seed vectors as input in the Feature Model, the desired output
for the feature coefficient vectors will be returned. The feature coefficient vectors
will then be passed to the autoencoder for training and subsequently to get the cor-
responding input vector of the toy data from the encoder.

The structure of the toy data generation is illustrated in Figure 5 through an ex-
ample of a possible Feature Model and encoder. The toy data generation results in
samples of input-output pairs. Beginning with a seed vector highlighted in blue, the
Feature Model computes the activations of the hidden layers shown in red, which
correspond to the feature coefficient vector of that sample. Subsequently, the output
of the Feature Model, displayed in green, also represents the toy data output. The
feature coefficient vector then serves as input for the encoder, which encodes it into
the corresponding toy data input shown in orange.

To give a concise overview, the parameters used for the toy data generation of the
experiments can be summed up as follows:

• The number of features, num_features, defines the number of neurons in the
hidden layers of the Feature Model, and thus determines the relevant features
in the toy data.

• The parameters min_neurons and max_neurons determine the limits of the
number of neurons per hidden layer in the Feature Model. Consequently, this
also specifies the limits of features per CFCS.

• The input and output dimensions, input_dim and output_dim, specify the di-
mensions of the toy data and therefore the corresponding dimensions in the
observed model.

• A list of sparsity values sparsity defines the probability per feature of being
absent in a sample.

• An importance function P and a threshold ρ to initialize the weights of the
Feature Model.

• There are several options to determine the number of samples for generating
the toy data. To ensure consistency across experiments, the number of samples
will be set to num_samples = α · num_features · output_dim, with α fixed at
50 for the following experiments.
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Figure 5: Toy Data Generation with a Feature Model and an Encoder
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The resulting toy dataset will consist of num_samples pairs of input-output vec-
tors consisting of numerical values, where each input vector has a dimension of
input_dim and each output vector has a dimension of output_dim.

3.3. Measuring Polysemanticity in a controlled Environment

Measuring polysemanticity in a controlled environment means that we have knowl-
edge of the Feature Model representing the ground truth and the input mapping,
which in this case takes the form of an encoder as part of an autoencoder. The model
trained on the toy data in which we aim to measure the degree of polysemanticity
will simply be referred to as the observed model. When measuring polysemanticity
in a controlled environment, we focus on two relevant cases. The first case is when
the Feature Model, encoder, and the observed model are all linear. In the second
case, at least one of these components is nonlinear, resulting in a nonlinear system
overall.

3.3.1. Measuring Polysemanticity in a linear Scenario

In a linear scenario, we can measure a neuron’s degree of polysemanticity with ex-
act partial derivatives per feature. As defined in Definition 9, the absolute partial
derivative is | ∂

∂fi
n(m(f))|, where n(x) represents the activation function of the neu-

ron and m(f) denotes the function of the encoder. Due to the linear nature of the sce-
nario, the gradient containing the partial derivatives can be evaluated at any feature
coefficient vector f ∈ F̂ . To measure polysemanticity, we aim to assess how many
absolute partial derivatives of that neuron per feature are relatively high. This will
show which features are represented and determine the degree of polysemanticity.
Three viable options for this are:

• Setting a threshold to determine when a feature is represented and counting
how many absolute partial derivatives exceed this threshold.

• The partial derivatives can also be interpreted as a probability distribution by
normalizing each absolute partial derivative by the sum of all absolute partial
derivatives of a neuron. Neurons representing fewer features will have lower
entropy, while those representing many features will display higher entropy.

• Inspired by the metric for measuring monosemanticity outlined in Section
2.2.3, another option to measure polysemanticity is: Dividing the sum of all
absolute partial derivatives by the maximal absolute partial derivative as a
measurement of how significant the partial derivatives are in relation to the
strongest one. A higher value indicates that many partial derivatives are rel-
atively large, suggesting that the neuron represents multiple features. For a
neuron with all gradients equal to zero, the result will also be set to 0.
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The first option has the drawback of needing a manually chosen threshold, which
can be difficult to set correctly. Additionally, it does not differentiate between par-
ticularly large partial derivatives and smaller ones that merely exceed the threshold.
Using entropy as a measure of polysemanticity better aligns with the expectations
for this type of measurement, as it effectively captures whether there are many or
few significant feature partial derivatives. Since entropy doesn’t provide an inter-
pretable count of how many features each neuron represents, we can normalize it
between the network’s minimum and maximum entropy values for better compar-
ison. However, a significant drawback is that neurons representing no features and
those representing a single feature will have the same entropy, making monoseman-
tic neurons indistinguishable from those representing no features.

The final option provides a measurement that does not require any parameters
to be set manually and a result interpretable as the number of features represented
by the neuron. Consequently, the degree of polysemanticity will be evaluated using
the formula from Definition 14 during the experiments.

Definition 14 Let n(x) be the activation function of the neuron n and m(f) be the mapping
from feature coefficient vector f = (f1, · · · , fn) to the input of the neuron. For both a linear
n(x) and linear m(f), the degree of polysemanticity of n can be defined as follows:

P(n) =
Σn
i=1| ∂

∂fi
n(m(f))|

max1≤j≤n| ∂
∂fj

n(m(f))|
.

A straightforward example of this is a neuron with two equal partial derivatives
and all other partial derivatives being zero, indicating that it represents these two
features. Consequently, the formula will yield a result of two as well.

3.3.2. Measuring Polysemanticity in a nonlinear Scenario

In a nonlinear scenario, the approach to measuring polysemanticity can remain un-
changed. However, determining the partial derivatives of the neurons’ activations
per feature becomes more complex since they may not be consistent across all fea-
ture coefficient vectors. Representative values for the partial derivatives can there-
fore only be approximated by sampling feature coefficient vectors. Again, we can
consider multiple options for this approximation:

• Random sampling of feature coefficient vectors and calculating the local gra-
dient. The resulting approximation for each partial derivative could then be
the mean or maximum of this derivative over the gradients.

• We can see integrated gradients [STY17] (see Section 2.2.3) as representative
values of the partial derivatives per feature. By definition, the baseline corre-
sponds to the feature coefficient vector with all features set to zero. For the
integrated gradient of each feature, the input vector x must be defined. The
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value corresponding to the considered feature will be set to 1 and all other
values will be 0 in the input x. The function to which the Integrated Gradi-
ents method will be applied is the activation function of the encoded features
n(m(f)).

In contrast to the first option, the second option utilizing the Integrated Gradients
method offers a clearer approach. Due to this and the desired properties outlined in
Section 2.2.3, it will be used to measure polysemanticity in the nonlinear scenarios
in the following experiments.

Let p represent the number of neurons and q the number of features in a given sce-
nario. To implement this Integrated Gradients method, the baseline vector x′ ∈ Rq is
initialized as the feature coefficient vector with all elements set to 0. Then, each neu-
ron in the neural network is examined iteratively to construct its gradient with re-
spect to the features. For each feature, the corresponding input vector x ∈ Rq is cre-
ated as the feature coefficient vector with all elements being 0 except the considered
feature set to 1. Using the Python library Captum by Kokhlikyan et al. [KMM+20],
the attribution of each feature for the considered neuron’s output is calculated via
Integrated Gradients. This is done based on the baseline x′ and feature-specific in-
put vector x, using a Riemann approximation, as outlined in Definition 12, with 50
interpolation steps. In this case, the considered function for each neuron is n(m(f))
as described above. This process results in a matrix M ∈ Rp×q where rows represent
neurons and columns represent features. Each entry provides the approximated
partial derivative of a neuron with respect to a feature, as computed by Integrated
Gradients.

3.3.3. Measuring Total Feature Dimensionality

Once the partial derivatives of the neurons’ activation functions have been calcu-
lated per feature, the model’s total feature dimensionality as defined in Section 2.2.3
needs to be measured. Depending on the linearity of the scenario, the partial deriva-
tives have either been calculated as outlined in Section 3.3.1 or Section 3.3.2.

The resulting matrix will have rows representing p neurons and columns repre-
senting q features, with each entry containing the partial derivative of a neuron with
respect to a specific feature. These entries will be converted to absolute values to get
the matrix M ∈ Rp×q of absolute partial derivatives. Subsequently, these absolute
values will be summed for each row to calculate v ∈ Rp representing the total of all
absolute partial derivatives per neuron. By dividing each element of the matrix M in
a row by the corresponding entry of the row in v, we obtain a matrix D ∈ Rp×q that
reflects the dimensionality of each feature per neuron, as described by Definition
10. Next, the columns of D will be summed to determine the total dimensionality of
each feature across all neurons, capping these sums at 1 (so that any value greater
than 1 is set to 1) to get u ∈ [0, 1]q. Finally, by dividing the sum of all elements in u by
the number of features q, we derive the total feature dimensionality D as described
in Section 2.2.3.
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3.4. Baseline Model Construction

To evaluate the impact of pruning on polysemanticity, a baseline model is required
for each experiment. This baseline model must meet three key criteria. First, it
should accurately predict the output to ensure that we have a model capable of
meaningfully addressing the given problem. Second, it is preferable for the neu-
rons to be monosemantic, allowing us to establish a baseline for how monosemantic
the model can become when there are sufficient neurons to represent the features.
Finally, it is desirable that most features are represented by the initial model. This
section outlines the general process of establishing a baseline model. The specific
parameters for the baseline model used in each experiment will be detailed in the
respective sections of the results.

First, the model’s architecture must be defined to ensure it has enough neurons to
represent all features. Here, we assume the most demanding case, where all ground
truth features are represented in each hidden layer. The straightforward approach
used here is to allocate each hidden layer at least as many neurons as there are
ground truth features, ensuring sufficient hidden layer sizes.

Moreover, the total feature dimensionality, as outlined in Section 2.2.3, will also
be measured for the baseline model. A value close to 1 reflects that most features
are represented by the model and is therefore an important criterion for the baseline
model construction. The following experiments take an intuitive approach to in-
crease total feature dimensionality by allocating more neurons to the hidden layers,
enabling the model to represent more features.

Afterward, the model must be trained to achieve a good performance, which will
be done, like all training in the experiments, using the Adam optimizer to minimize
the MSE loss as described in Section 3.1. The critical factor is that the MSE loss
converges at the end of training, indicating a minimum of the loss. This will be
achieved with a sufficient number of epochs during the training process.

To conclude, a well-defined baseline model will serve as a reference point against
which the effects of pruning on polysemanticity can be evaluated. This allows for
clear comparisons across different scenarios.

3.5. Pruning and Retraining

As described in Section 2.3, the baseline model will be pruned with Structured Global
Magnitude Pruning. To implement this pruning technique, the Python library Torch-
Pruning, based on the work of Fang et al. [FMS+23], will be used. Structured prun-
ing removes groups of parameters rather than individual ones. Due to dependencies
within each group, all parameters in a group must be removed together to preserve
the model’s integrity during the pruning process. Torch-Pruning uses a tool called
DependencyGraph to identify these dependencies and handle them correctly, which
is described in detail by Fang et al. [FMS+23]. The library supports the implemen-
tation of custom importance criteria, which rank parameter groups to determine the
order of their removal, as well as implementing a custom pruning method.
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To implement Structured Global Magnitude Pruning, an importance criterion is
defined to assign each neuron an importance score. Based on this, a certain fraction
of neurons having the lowest scores will be removed according to a specified prun-
ing ratio. The importance score is calculated as the mean of the absolute values of
its input weights. As a result, the neurons with the lowest mean of absolute input
weights will be pruned. To preserve the output dimension, neurons in the output
layer are excluded from pruning. The importance scores of the remaining neurons
are then compared across the entire network, creating a global ranking of neurons
for pruning.

Torch-Pruning prunes parameter groups by physically removing them, unlike
multiple other libraries that apply a mask to zero out parameters. This approach
fully removes the parameters of a neuron from the neural network’s structure, re-
sulting in a newly structured network [FMS+23]. The retraining process that follows
pruning will be adjusted to fit the neural network’s new structure, while still follow-
ing the same steps outlined in Section 3.1.

A pruning ratio will be given as a parameter to determine how many neurons will
be removed from the network. However, this ratio does not directly reflect the exact
fraction of parameters eliminated by the pruning algorithm; instead, it provides an
approximate number of neurons to be removed. The actual pruning ratio pr must
subsequently be computed based on the number of parameters in the new model
nparams and in the baseline model bparams:

pr = 1− nparams

bparams
.

The exact pruning ratios used will therefore be specified for each experiment in the
corresponding results section.

4. Experimental Results

The experimental results in this section are divided into linear and nonlinear scenar-
ios. The first linear scenario is described in more detail to provide a clear overview
of the experimental setup. In general, the details of the individual experiments can
be found in Appendices A to F. The subsections of the linear and nonlinear exper-
iments both start with the scenarios involving the fewest features and progress in
complexity. Key results are highlighted in this section, with further details outlined
in the appendices. Finally, an overall conclusion from these experiments will be
drawn in Section 6.

The parameters of the experiments were selected to create a range of scenarios
with varying complexities in order to observe polysemanticity in different contexts.
In particular, the number of features and the number of layers in the Feature Model,
which represent interdependencies between features, were key factors for the com-
plexity of the scenarios. Here, it might appear that the second and third nonlin-
ear scenarios respectively resemble the first and second linear scenarios. However,
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these experiments cannot be directly compared, as they are based on fundamentally
different Feature Models.

According to the approach described in Section 3, each experiment begins with
a neural network that serves as the baseline model. The degree of polysemanticity
is then assessed during training and for different pruning ratios after retraining.
Next, a baseline model with the same structure is introduced, but with the Dropout
technique applied to each hidden layer, using a dropout rate of 0.5. At last, this
model is then evaluated in the same manner as the first one. Additional evaluations,
which did not yield informative results but were included in the experiments, are
also provided in the appendices.

4.1. Pruning in linear Scenarios

To gain a clear understanding of the overall design and approach of the experiments,
the first linear experiment is conducted in a simple scenario as outlined in Figure 6.
This figure shows the parameter configurations used for the first experiment. In
this setup, num_features = 32 features represent the ground truth and flow into an
input with input_dim = 10 dimensions. A sparsity list was created using a function
random(a, b) that generates random values uniformly between a = 0.6 and b = 0.8,
resulting in an average sparsity of 0.7. Consequently, the average probability of a
feature being present is p = 1 − 0.7 = 0.3, which averages to 0.3 · 32 = 9.6 features
per input sample with 10 dimensions. The output of the toy data samples consists
of 2 dimensions. The number of samples of the toy data can then be calculated as
num_samples = 50 · num_features · output_dim = 3200.

The Feature Model was designed with a single hidden layer of 32 neurons, each
corresponding to a specific feature. As a result, no interdependencies between fea-
tures are present. The input layers of the Feature Models in all experiments were
simply set to have the same number of neurons as there are features. So overall, the
model architecture includes an input layer of 32 neurons, a hidden layer of 32 neu-
rons, and an output layer of 2 neurons. As linear = True, all activation functions
in neural networks within this experiment are linear. To generate the weights of
the Feature Model, the importance function P = random(−1, 1) generates random
values uniformly between −1 and 1, with a threshold of ρ = 0.05.

With the experimental scenario defined, the next step is to specify the baseline
model that will be trained on the data. This observed model is a neural network
with layer dimensions observed_model = [10, 128, 32, 2], referring to an input layer
with 10 neurons, two hidden layers with respectively 128 and 32 neurons, and an
output layer with 2 neurons. After training for num_epochs = 50 epochs, the MSE
loss converges to approximately 0.6, and the model achieves a total feature dimen-
sionality close to 0.95, indicating that the features are well represented.

The development of the degree of polysemanticity during the training process of
the baseline model can be seen in Figure 7. Each point represents the degree of poly-
semanticity as the y-coordinate for the epoch given by the x-coordinate. This graph
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Parameter Configuration
linear True

num_features 32
hidden_layers [32]
input_dim 10
output_dim 2
sparsity {si = random(0.6, 0.8)|1 ≤ i ≤ num_features}

P random(−1, 1)
ρ 0.05

num_samples 3200
num_epochs 50

observed_model [10, 128, 32, 2]

Figure 6: Linear Experiment 1 (Parameter Configurations)

shows a downward trend in polysemanticity, with an overall decrease of around
2%.

After having trained the baseline model, it can be pruned and retrained for num_epochs =
50 epochs to evaluate the development of polysemanticity with respect to different
pruning ratios. Figure 8a shows the resulting graph, where each point represents
a pruning ratio as the x-coordinate and the corresponding polysemanticity after
retraining as the y-coordinate. Although an upward trend appears after pruning
around 1.5% of the neural network’s parameters (a pruning ratio of 0.015), there is
no significant difference in the degree of polysemanticity when comparing the base-
line model to the model after pruning approximately 70%. Moreover, introducing
the Dropout technique by omitting half of the neurons on each hidden layer results
in a small decrease of polysemanticity after pruning 70% of the model. However, a
clear trend is still not visible. This is shown in Figure 8b.

To see if the degree of polysemanticity develops differently for the individual
layers of the model, the layer-wise degree of polysemanticity is plotted in Figure
9. However, both layers seem to follow a similar development, suggesting that no
distinction can be made.

Additional details of this experiment are provided in Appendix A. When consid-
ering the development of polysemanticity in the context of total feature dimension-
ality, it can be seen that it does not contribute additional insight to this trend.

The second linear experiment introduces more features and implements interde-
pendencies between those features through multiple hidden layers in the Feature
Model. The setup and results of this experiment are described in more detail in
Appendix B.

As can be seen in Figure 10a, the degree of polysemanticity increases overall by
over 5% after pruning around 70% of the model. However, polysemanticity fluctu-
ates strongly for different pruning ratios, such as the decline by around 7% between
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Figure 7: Linear Experiment 1 | Polysemanticity during Training

the ratios of 0.16 and 0.18. As a result, no definite trend can be concluded from this
experiment. In contrast, polysemanticity in the model that implements the Dropout
technique slightly decreases for higher pruning ratios, as shown in Figure 10b.

Like the first experiment, this experiment also suggests that the individual layers
of a neural network seem to follow a similar development of polysemanticity after
pruning, as described in Appendix B.

4.2. Pruning in nonlinear Scenarios

Since the nonlinear experiments more closely reflect realistic scenarios and must rely
on mere approximations of gradients, four nonlinear experiments were conducted,
compared to just the two linear ones.

The parameter configurations of the first nonlinear experiment are outlined in
Figure 11. As specified by the parameter linear = False, the nonlinear scenarios
differ from the linear ones in that all activation functions in the hidden layers of
neural networks are ReLU. The resulting baseline model converges to a MSE loss of
around 0.027 and achieves a total feature dimensionality of 0.99.

This experiment demonstrates again, both with and without the Dropout tech-
nique, that polysemanticity appears to decrease throughout the training process, as
shown in Figure 12.

The details of the second nonlinear experiment are explained in Appendix D.
However, two results in particular stand out for this scenario. In contrast to the
previous experiments, polysemanticity seems to increase during training, both with
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(a) Model without Dropout

(b) Model with Dropout

Figure 8: Linear Experiment 1 | Polysemanticity after Pruning and Retraining
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Figure 9: Linear Experiment 1 | Layer-wise Polysemanticity for different Pruning
Ratios

and without Dropout, as shown in Figure 13. Additionally, a clearer trend of pol-
ysemanticity after pruning is visible for both models, as can be seen in Figure 14.
Without Dropout, polysemanticity decreases by about 5%, while with Dropout, it
drops by 11% after pruning more than 70% of the baseline model.

In the third nonlinear experiment, as described in Appendix E, polysemanticity
appears to develop in opposite directions during training for the models with and
without Dropout. This is shown in Figure 15, where polysemanticity increases by
approximately 6% without Dropout and decreases by around 19% with Dropout.
The results in Appendix E also show that polysemanticity tends to be lower for
higher pruning ratios without Dropout. With Dropout, however, no trend is appar-
ent.

Figure 16 shows that in the final nonlinear experiment, polysemanticity declines
at higher pruning ratios both with and without Dropout. Additional details on this
experiment are provided in Appendix F.

5. Discussion

The experiments demonstrated that the training process adjusts the degree of pol-
ysemanticity within the models, often revealing a clear trend toward decreasing
polysemanticity, though increases can be observed in some cases too. Figures 12, 13
and 15 highlight that models incorporating the Dropout technique exhibit steeper
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(a) Model without Dropout

(b) Model with Dropout

Figure 10: Linear Experiment 2 | Polysemanticity after Pruning and Retraining
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Parameter Configuration
linear False

num_features 16
hidden_layers [12, 4]
input_dim 5
output_dim 2
sparsity {si = random(0.65, 0.75)|1 ≤ i ≤ num_features}

P random(−1, 1)
ρ 0.05

num_samples 1600
num_epochs 50

observed_model [5, 64, 16, 16, 2]

Figure 11: Nonlinear Experiment 1 (Parameter Configurations)

Figure 12: Nonlinear Experiment 1 | Polysemanticity during Training with and
without Dropout
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Figure 13: Nonlinear Experiment 2 | Polysemanticity during Training with and
without Dropout

changes in polysemanticity, with more pronounced rates of change compared to
models without Dropout. Additionally, models with and without Dropout tended
to follow similar trends of polysemanticity during training and after pruning, both
increasing or decreasing in polysemanticity.

When examining polysemanticity after pruning and retraining, the layers of neu-
ral networks appeared to exhibit uniform patterns of change. As a result, polyse-
manticity could be evaluated globally during the experiments instead of taking the
individual layers into account. In addition to that, total feature dimensionality did
not seem to play a significant role in evaluating polysemanticity after pruning.

This brings us to the central question of whether pruning affects polysemanticity
in neural networks or not. While no definitive trend could be seen in most cases,
pruning led to a reduction of polysemanticity in the cases for which a clear trend
could be concluded. This can be seen in Figures 10b, 14 and 16. These findings
suggest that pruning may reduce polysemanticity under certain conditions, though
the results remain inconclusive. The experiments were all conducted in a controlled
environment, leaving the impact of pruning on polysemanticity in more realistic
scenarios, such as one involving the MNIST dataset of handwritten digits [Den12],
for future research.

An intriguing approach proposed by Sharkey et al. [SBM22] suggests that ground
truth features of a problem can be extracted using a sparse autoencoder applied to
the activations of a neural network. Here, sparse autoencoders were used to encode
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(a) Model without Dropout

(b) Model with Dropout

Figure 14: Nonlinear Experiment 2 | Polysemanticity after Pruning and Retraining

38



Figure 15: Nonlinear Experiment 3 | Polysemanticity during Training with and
without Dropout

and decode the neuron activations of a model. The learned weights of the decoder
then correspond to the features that should be extracted. This process is described
in more detail by Sharkey et al. [SBM22]. If this method enables identification of fea-
tures present in an input sample, it could provide a means to analyze the influence
of specific features on individual neurons, offering a way to measure polysemantic-
ity in scenarios without knowledge of the underlying ground truth.

Section 2.2.2 explored the potential benefits of polysemanticity to highlight its rel-
evance for neural networks and the need to evaluate factors that influence it. How-
ever, the experimental setup within this thesis did not align with scenarios where
polysemanticity is thought to be advantageous, leaving this aspect for future stud-
ies. That is why corresponding metrics to evaluate advantages of polysemanticity
were left out in the experiments of this thesis.

6. Conclusion

Polysemanticity refers to a neuron’s activation being affected by multiple unrelated
features. This thesis aimed to examine how pruning, meaning the removal of pa-
rameters from a model, impacts polysemanticity in neural networks. To create con-
trolled experimental scenarios and enable precise measurements of polysemanticity,
a method for generating synthetic toy data with known ground truth features was
developed. The conducted experiments can be divided into linear and nonlinear
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(a) Model without Dropout

(b) Model with Dropout

Figure 16: Nonlinear Experiment 4 | Polysemanticity after Pruning and Retraining
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scenarios, depending on the linearity of the models’ activation functions.
Each experiment begins with a large model designed to sufficiently represent the

ground truth features. Various pruning ratios are then applied to reduce the model’s
size, followed by retraining to adapt the pruned network to its reduced structure. In
this process, entire neurons are pruned based on the mean magnitude of their input
weights. Neurons with the lowest mean magnitudes across the entire network are
removed first. Polysemanticity is then evaluated throughout training and after the
pruning process to observe any changes. Additionally, the Dropout technique was
examined for its role in the context of pruning and polysemanticity, as it encourages
redundancy in feature representations by enabling neurons to adapt to the absence
of others.

Key findings from the experiments include the observation that the training pro-
cess adjusts polysemanticity until it converges at a certain level, often showing a
decrease during training. Dropout appeared to have minimal effect on the direction
of how polysemanticity changes, with both the model with and without Dropout
tending to change polysemanticity in the same direction either decreasing or in-
creasing.

The core research question of whether pruning consistently affects polysemantic-
ity could not be definitively answered. However, there was a tendency for polyse-
manticity to decrease in some cases after pruning. This challenges the initial expec-
tation that polysemanticity would increase due to fewer neurons being available to
represent the same number of features. A reduction in polysemanticity might oc-
cur because neurons with less relevant feature representations are pruned, leaving
out the need for other neurons to compensate by representing additional features.
Furthermore pruning can help prevent overfitting, as described in Section 2.3. As
a result, the models may be able to shift their focus more on representing only the
most relevant features, leading to reduced polysemanticity.

The evaluation of factors influencing polysemanticity is relevant due to its role
in neural network interpretability [SSJ+23] and its connection to better cognitive
performance, as outlined in Section 2.2.2. For this, pruning could play a central role,
as the removal of neurons also removes the corresponding feature representations,
while retraining can allow for an adjustment in polysemanticity to compensate for
this loss.

The work of Sharkey et al. [SBM22], as already discussed in Section 5, is particu-
larly interesting for the evaluation of polysemanticity in scenarios without knowl-
edge of the ground truth features. They propose a method for extracting these fea-
tures from neuron activations, which could enable measuring polysemanticity by
analyzing a neuron’s activation patterns for specific features. However, implement-
ing this method would greatly increase the complexity of experiments, requiring a
vast number of samples to assess feature impacts on neural activations. Thus, eval-
uating polysemanticity in uncontrolled environments without predefined ground
truth features remains a task for future research.

Lastly, the observed trend of decreasing polysemanticity during training warrants
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further investigation to determine whether it is a generalizable phenomenon. Ex-
panding on these experiments could help clarify the nature of polysemanticity and
its changes during training in neural networks.

42



References

[Bis06] Christopher Bishop. Pattern Recognition and Machine Learning. Springer,
Berlin, 2006.

[BKG21] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders, 2021.

[BOFG20] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John
Guttag. What is the state of neural network pruning?, 2020.

[Den12] Li Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine,
29(6):141–142, 2012.

[EHO+22] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom
Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn
Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario
Amodei, Martin Wattenberg, and Christopher Olah. Toy models of su-
perposition. Transformer Circuits Thread, 2022.

[FC19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks, 2019.

[FMR16] Stefano Fusi, Earl K Miller, and Mattia Rigotti. Why neurons mix: high
dimensionality for higher cognition. Current Opinion in Neurobiology,
37:66–74, 2016. Neurobiology of cognitive behavior.

[FMS+23] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao
Wang. Depgraph: Towards any structural pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16091–16101, 2023.

[Hay98] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, USA, 2nd edition, 1998.

[HS92] Babak Hassibi and David Stork. Second order derivatives for network
pruning: Optimal brain surgeon. In S. Hanson, J. Cowan, and C. Giles,
editors, Advances in Neural Information Processing Systems, volume 5.
Morgan-Kaufmann, 1992.

[HSK+12] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R. Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors, 2012.

[JSH22] Adam S. Jermyn, Nicholas Schiefer, and Evan Hubinger. Engineering
monosemanticity in toy models, 2022.

43



[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[KMM+20] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal
Alsallakh, Jonathan Reynolds, Alexander Melnikov, Natalia Kliushk-
ina, Carlos Araya, Siqi Yan, and Orion Reblitz-Richardson. Captum: A
unified and generic model interpretability library for pytorch, 2020.

[LDS89] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In
D. Touretzky, editor, Advances in Neural Information Processing Systems,
volume 2. Morgan-Kaufmann, 1989.

[LM20a] Matthew L. Leavitt and Ari Morcos. Selectivity considered harmful:
evaluating the causal impact of class selectivity in dnns, 2020.

[LM20b] Matthew L. Leavitt and Ari S. Morcos. On the relationship between
class selectivity, dimensionality, and robustness, 2020.

[MK24] Simon C Marshall and Jan H Kirchner. Understanding polyse-
manticity in neural networks through coding theory. arXiv preprint
arXiv:2401.17975, 2024.

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international con-
ference on machine learning (ICML-10), pages 807–814, 2010.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imper-
ative style, high-performance deep learning library, 2019.

[Rud17] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms, 2017.

[SBM22] Lee Sharkey, Dan Braun, and Beren Millidge. [interim research report]
taking features out of superposition with sparse autoencoders, 2022.

[SSJ+23] Adam Scherlis, Kshitij Sachan, Adam S. Jermyn, Joe Benton, and Buck
Shlegeris. Polysemanticity and capacity in neural networks, 2023.

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribu-
tion for deep networks, 2017.

[ZTLT21] Yu Zhang, Peter Tino, Ales Leonardis, and Ke Tang. A survey on neural
network interpretability. IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, 5(5):726–742, October 2021.

44



Appendices

Appendix A Linear Experiment 1

The parameter configurations for this experiment are illustrated in Figure 6. While
most results have already been presented in Section 4.1, Figure 17 includes the pol-
ysemanticity during training in the model with Dropout, where a decrease in poly-
semanticity can again be observed. Additionally, Figure 18 shows the progression
of polysemanticity after pruning in relation to total feature dimensionality, as de-
scribed in Section 3.3.3. In this figure, the polysemanticity values are multiplied by
the total feature dimensionality, but this adjustment does not appear to add further
meaning to the trend in polysemanticity, as can also be seen in the results of the
other experiments.

Figure 17: Linear Experiment 1 | Polysemanticity during Training with Dropout

45



Figure 18: Linear Experiment 1 | Polysemanticity after Pruning and Retraining in
the Context of Total Feature Dimensionality

Appendix B Linear Experiment 2

The parameter configurations of this experiment are defined in detail in Figure 19.

Parameter Configuration
linear True

num_features 64
hidden_layers [32, 24, 8]
input_dim 10
output_dim 2
sparsity {si = random(0.8, 0.9)|1 ≤ i ≤ num_features}

P random(−1, 1)
ρ 0.05

num_samples 6400
num_epochs 50

observed_model [10, 256, 64, 64, 2]

Figure 19: Linear Experiment 2 (Parameter Configurations)

The resulting baseline model of this experiment converges to a MSE loss of around
0.15 and represents the features sufficiently with a total feature dimensionality of
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0.99.
Similar to the first experiment, there first seems to be a downward trend of poly-

semanticity during the training process, as shown in Figure 20. In contrast, polyse-
manticity increases slightly during the final half of the training epochs.

Figure 20: Linear Experiment 2 | Polysemanticity during Training

Figure 21 shows the layer-wise polysemanticity for different pruning ratios for
this experiment. As can also be seen in the first experiment, the layers seem to
develop in a similar way.
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Figure 21: Linear Experiment 2 | Layer-wise Polysemanticity for different Pruning
Ratios

Appendix C Nonlinear Experiment 1

The parameter configurations of this experiment are already described in Section
4.2.

Figure 22 shows the degree of polysemanticity after pruning and retraining in
the model with and without Dropout. It can be seen that polysemanticity does not
change significantly for the highest pruning ratios. There are, however, fluctuations
of polysemanticity which tend to be higher than the initial value of polysemanticity.

Additionally, Figure 23 illustrates polysemanticity after pruning multiplied by
the total feature dimensionality. The trends of polysemanticity for the models with
and without Dropout appear similar to those observed without accounting for to-
tal feature dimensionality. This further indicates that incorporating total feature
dimensionality does not significantly impact the trends.
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(a) Model without Dropout

(b) Model with Dropout

Figure 22: Nonlinear Experiment 1 | Polysemanticity after Pruning and Retraining
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(a) Model without Dropout

(b) Model with Dropout

Figure 23: Nonlinear Experiment 1 | Polysemanticity after Pruning and Retraining
in the Context of Total Feature Dimensionality
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Appendix D Nonlinear Experiment 2

Figure 24 outlines the parameter configurations of this experiment. The baseline
model achieves a MSE loss of 0.448 with a total feature dimensionality of 0.98.

Parameter Configuration
linear False

num_features 32
hidden_layers [32]
input_dim 10
output_dim 2
sparsity {si = random(0.6, 0.8)|1 ≤ i ≤ num_features}

P random(−1, 1)
ρ 0.05

num_samples 3200
num_epochs 50

observed_model [10, 128, 32, 2]

Figure 24: Nonlinear Experiment 2 (Parameter Configurations)

Figure 25 shows polysemanticity after pruning scaled by total feature dimension-
ality. In comparison to Figure 14, this suggests again that total feature dimensional-
ity adds no significant meaning for the development of polysemanticity.
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(a) Model without Dropout

(b) Model with Dropout

Figure 25: Nonlinear Experiment 2 | Polysemanticity after Pruning and Retraining
in the Context of Total Feature Dimensionality
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Appendix E Nonlinear Experiment 3

The parameter configurations described in Figure 26 result in a baseline model with
a MSE loss of 0.0949 and a total feature dimensionality of 0.98. The development
of polysemanticity in the models with and without Dropout is shown in Figure 27,
where the model without Dropout exhibits a reduction in polysemanticity for higher
pruning ratios. The corresponding trends in the context of total feature dimension-
ality are illustrated in Figure 28.

Parameter Configuration
linear False

num_features 64
hidden_layers [32, 24, 8]
input_dim 10
output_dim 2
sparsity {si = random(0.8, 0.9)|1 ≤ i ≤ num_features}

P random(−1, 1)
ρ 0.05

num_samples 6400
num_epochs 50

observed_model [10, 256, 64, 64, 2]

Figure 26: Nonlinear Experiment 3 (Parameter Configurations)
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(a) Model without Dropout

(b) Model with Dropout

Figure 27: Nonlinear Experiment 3 | Polysemanticity after Pruning and Retraining
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(a) Model without Dropout

(b) Model with Dropout

Figure 28: Nonlinear Experiment 3 | Polysemanticity after Pruning and Retraining
in the Context of Total Feature Dimensionality
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Appendix F Nonlinear Experiment 4

The parameters for the final nonlinear experiment are detailed in Figure 29. The
baseline model achieves an MSE loss of 0.5408 and a total feature dimensionality of
0.98. Figure 30 illustrates the polysemanticity during training for the model without
Dropout, while Figure 31 shows the same for the model with Dropout. Here, poly-
semanticity seems to increase in the first half of training and decrease afterward for
both models. Finally, Figure 32 presents the development of polysemanticity after
pruning scaled by total feature dimensionality.

Parameter Configuration
linear False

num_features 128
hidden_layers [64, 48, 16]
input_dim 10
output_dim 2
sparsity {si = random(0.85, 0.95)|1 ≤ i ≤ num_features}

P random(−1, 1)
ρ 0.05

num_samples 12800
num_epochs 50

observed_model [10, 512, 128, 128, 2]

Figure 29: Nonlinear Experiment 4 (Parameter Configurations)
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Figure 30: Nonlinear Experiment 4 | Polysemanticity during Training without
Dropout

Figure 31: Nonlinear Experiment 4 | Polysemanticity during Training with Dropout
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(a) Model without Dropout

(b) Model with Dropout

Figure 32: Nonlinear Experiment 4 | Polysemanticity after Pruning and Retraining
in the Context of Total Feature Dimensionality
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