
Faculty of Mathematics and Computer Science Artificial Intelligence Group

An Investigation of a Notion of „Variable
Forgetting“ that Minimizes Truth Values

Bachelor’s Thesis
in partial fulfillment of the requirements for

the degree of Bachelor of Science (B.Sc.)
in Computer Science

submitted by
Christoph Kaplan

First examiner: Dr. Kai Sauerwald
Artificial Intelligence Group

Advisor: Dr. Kai Sauerwald
Artificial Intelligence Group

Statement

Ich erkläre, dass ich die Bachelorarbeit selbstständig und ohne unzulässige Inan-
spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen
und Hilfsmittel verwendet und die aus diesen wörtlich oder sinngemäß entnom-
menen Stellen als solche kenntlich gemacht. Die Versicherung selbstständiger Ar-
beit gilt auch für enthaltene Zeichnungen, Skizzen oder graphische Darstellungen.
Die Bachelorarbeit wurde bisher in gleicher oder ähnlicher Form weder derselben
noch einer anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Mit
der Abgabe der elektronischen Fassung der endgültigen Version der Bachelorarbeit
nehme ich zur Kenntnis, dass diese mit Hilfe eines Plagiatserkennungsdienstes auf
enthaltene Plagiate geprüft werden kann und ausschließlich für Prüfungszwecke
gespeichert wird.

Yes No

I agree to have this thesis published in the library. ✓□ □

I agree to have this thesis published on the webpage of
the artificial intelligence group. ✓□ □

The thesis text is available under a Creative Commons
License (CC BY-SA 4.0). ✓□ □

The source code is available under a GNU General Public
License (GPLv3). ✓□ □

The collected data is available under a Creative Commons
License (CC BY-SA 4.0). ✓□ □

Berlin, 03.07.2024
. .
(Place, Date) (Signature)

ii

Zusammenfassung

Diese Bachelorarbeit widmet sich dem Thema "Variable Forgetting" – einer Tech-
nik der Aussagenlogik und der Künstlichen Intelligenz. Aussagenlogik ist eine
der grundlegendsten Logiken, die in der Informatik sowie darüber hinaus eine
zentrale Rolle spielt. In der KI findet sie Anwendung in den Bereichen der Wis-
sensrepräsentation, des Belief Revision sowie in Multiagentensystemen. Da Wis-
sen einem ständigen Wandel unterliegt, ist eine kontinuierliche Revision und Ver-
feinerung der formalen Repräsentation von Wissen notwendig. Des Weiteren stellt
die Reduktion wachsender Komplexität von logischen Sätzen oder Wissensbasen
ein weiteres Problem dar. Variable Forgetting bietet einen Ansatz zur Reduktion
dieser Komplexität durch Fokussierung oder Aktualisierung der Wissensdarstel-
lung.

Das klassische Variable Forgetting in der Logik geht auf die Arbeit von George
Boole aus dem Jahr 1854 zurück, mit bedeutenden Beiträgen von Lin und Reiter
in ihrem wegweisenden Paper "Forget It!" von 1994. Diese Bachelorarbeit stellt
einen "zurückhaltenden" Ansatz zum Variable Forgetting vor, genannt "Skeptical
Variable Forgetting". Eine Besonderheit des Variable Forgetting im Allgemeinen
ist, dass es in bestimmten Szenarien zu drastischen Ergebnissen wie Tautologien
oder Kontradiktionen führen kann, was ein zentrales epistemisches Interesse dieser
Arbeit darstellt. Wir untersuchen Skeptical Variable Forgetting im Vergleich zum
klassischen Variable Forgetting und heben dabei Eigenschaften und Unterschiede
hervor. Die Studie beginnt mit einer syntaktischen Analyse und geht dann zu einer
semantischen Untersuchung und Charakterisierung des Skeptical Variable Forget-
ting über. Darüber hinaus werden verwandte Themen kurz angeschnitten, um ein
holistischeres Bild zu vermitteln.

iii

Abstract

This bachelor thesis explores "Variable Forgetting" – a technique in propositional
logic and artificial intelligence. Propositional logic is one of the fundamental logics
in computer science and beyond. In AI, it finds applications in Knowledge Repre-
sentation and Reasoning, Belief Revision and Multi-Agent Systems. Since knowl-
edge is constantly changing, continuous revision and refinement of its formal rep-
resentation are necessary. Additionally, reducing the growing complexity of logical
sentences or knowledge bases presents another challenge. Variable Forgetting offers
an approach to reduce this complexity by focusing or revising the representation of
knowledge.

Classical Variable Forgetting in logic traces back to George Boole’s work in 1854,
with significant contributions from Lin and Reiter in their seminal paper "Forget
It!" in 1994. This thesis introduces a cautious approach to "Variable Forgetting",
termed "Skeptical Variable Forgetting". An intriguing aspect of Variable Forgetting
is its potential to lead to drastic outcomes such as tautologies or contradictions in
specific scenarios, which is a central epistemic interest of this work. We examine
Skeptical Variable Forgetting compared to classical Variable Forgetting, highlight-
ing their properties and distinctions. The study begins with a syntactic analysis and
proceeds to a semantic examination and characterization of Skeptical Variable For-
getting. Additionally, related topics are briefly addressed to provide a more holistic
understanding.

iv

Contents

1 Introduction 1
1.1 Preliminaries . 2
1.2 Classical vs Skeptical Forget . 5

2 Syntactic Investigation and Characterization 8
2.1 Behavior of Truth Values in Syntax Trees 13
2.2 Skeptical Forgetting and CNF . 15

3 Semantic Investigation 21
3.1 Reduction of Signature . 21
3.2 Ambiguities . 22
3.3 Two ways to resolve the Ambiguity 23

4 Semantic Characterization 26
4.1 ⊤ and ⊥ Substitutions . 26
4.2 Forget Relation and Relevance . 32
4.3 Inclusion or Exclusion . 34
4.4 Minimizer or Maximizer . 36
4.5 Switch Intuition . 40
4.6 Model Set Dynamics . 40

5 Related Topics 45
5.1 Marginalisation . 45
5.2 Variable Inpependence . 47

6 Conclusion 50

v

1 Introduction

Whether considering Knowledge Representation and Reasoning (KRR), Belief Re-
vision or Multi-Agent Systems (MAS), many fields in artificial intelligence depend
critically on modeling and representation of knowledge. Hence, it is nearby that an
artificial agent should be capable not only of acquiring knowledge but also of elim-
inating or forgetting knowledge. An important aspect is recognizing that knowl-
edge is subject to change. Consider a simple example: an agent models the world
through a knowledge base. If the material world "out there" changes—say a statue is
removed from the town square—the knowledge about this statue’s presence should
update correspondingly. This requires the agent to revise it’s knowledge base, po-
tentially eliminating outdated statements.

Not only does the external world undergo change; the very notions we use to
apprehend and articulate also evolve. Whether this distinction can be made or not,
pure descriptions or facts are crucial, but normative views and values also play a
role in modeling thought and are subject to change as well. We suppose that knowl-
edge undergoes transformation and is shaped not only by the object but also by the
subject, by the observer. What is considered valid knowledge evolves with time,
history, and societal context. Facts are compelling but not "dogmatic" and can be re-
futed or altered by scientific progress. Reflection on knowledge also leads us to the
notion that it revolves around the determination of statements as "true" or "false".
Yet, a frequently neglected dimension is that of scope or focus—what is included,
why it is included, and what is excluded. This reveals that knowledge is not solely
concerned with factual accuracy but also with the reasons for relevance, attention,
and exclusion—what matters and what does not. Overlooking certain connections
can alter the whole picture. Those familiar with "whodunit" movies understand
how adding new information creates twists, and the same applies to removing in-
formation. A similar aspect is that knowledge might be irrelevant in certain contexts
and therefore unnecessary. Attribution of relevance shapes knowledge, and what is
deemed irrelevant is or can be consequently forgotten. There are many different ap-
proaches to understanding the notion of forgetting, some of which are discussed in
[VDHLM09]. We will approach forgetting from the perspective of relevance.

In the technical landscapes of AI, we confront material challenges—complex com-
putations for querying knowledge bases and deducing conclusions demand sub-
stantial computational power. Filtering out irrelevant knowledge also simplifies
matters, offering potential technical benefits across diverse AI domains.

In Knowledge Representation and Reasoning (KRR), propositional logic serves as
the formalism for modeling knowledge. To this end there are a few approaches to
forgetting in logic yet it is not a well researched topic. The concept of forgetting itself
can be interpreted in various ways, with differing opinions on its definition and op-
erational mechanics. This paper focuses specifically on variable forgetting within
propositional logic. George Boole, in his work "The Laws of Thought" [Boo21],
introduced the idea of "elimination of the middle terms", wich can be seen as an

1

early version of variable forget in the field. The Forget operation, which we aim to
build upon, was introduced in Lin and Reiter’s 1994 seminal paper titled "Forget It!"
[LR94]. Their approach involves the susbtitution of a variable by logical constants.
This notion is semantically defined by establishing two interpretations that agree on
all aspects except possibly the truth value of the variable being forgotten, thereby
deeming it irrelevant.

In this thesis, we introduce a conjunction-based variation of the forgetting op-
eration, termed SkepForget, which we intend to explore in depth. We will be-
gin by investigating the syntactic aspects, comparatively analyzing the behavior of
SkepForget. Next, we will examine the semantic patterns and implications to de-
scribe the general properties of this operation. Finally, we will discuss related topics
to highlight the connecting research in the field.

1.1 Preliminaries

Before delving into the topic of forgetting, let’s establish some fundamental concepts
in propositional logic.

We denote a signature Σ as a set of propositional atomic variables. Let LΣ denote
a propositional language over Σ. Atomic variables are signified by small Latin let-
ters; for example, Σ = {a, b, c}. Formulae (or sentences) in LΣ are denoted by capital
Latin letters (e.g., F,G,H) and are inductively defined using common logical con-
nectives (¬, ∧, ∨, →, ↔) as well as logical constants ⊤ for true and ⊥ for false. Every
propositional variable a ∈ Σ is a formula F . If F is a formula, then so is ¬F . If F and
G are formulae, then so are (F ∧G), (F ∨G), (F → G), and (F ↔ G). For instance,
F = (¬(a ∧ b) ∨ (c → d)) is a formula. We refer to a literal as an atomic variable or
its negation for instance a and ¬a are both a-literals.

Definition 1 (Truth Values). The set of truth values, denoted as BOOL, is defined as
{0, 1}, where 0 represents false and 1 represents true.

Definition 2 (Σ-Interpretation). Let Σ be a signature, F be a formula over the language
LΣ. Let AΣ ⊆ LΣ denote all the atomic formulae in LΣ. We define the function ωa : AΣ →
BOOL as Σ-Interpretation. We extend ωa to ω : LΣ → BOOL.

• For every atomic formula A ∈ AΣ, ω(A) = ωa(A).

• ω(¬F) =

{
1, if ω(F) = 0

0, otherwise

• ω(F = (G ∧H)) =

{
1, if ω(G) = 1 and ω(H) = 1

0, otherwise

• ω(F = (G ∨H)) =

{
1, if ω(G) = 1 or ω(H) = 1

0, otherwise

2

We will refer to Σ-Interpretation just by saying "interpretation" or "possible world".
As for semantic notions we denote ΩΣ as the set of all interpretations under Σ.

Definition 3 (Semantic Consequence). Let Σ be a signature, F be a formula and ω ∈ ΩΣ.
If ω(F) = 1 then the interpretation ω is a model of F , denoted by ω |=Σ F . We say ω
satisfies or models F .

We denote ModΣ(F) = {ω | ω |=Σ F} as the subset of ΩΣ in which F holds true
such that ω(F) = 1 where ω ∈ ΩΣ. Semantic equivalence under Σ is denoted as ≡Σ.
For instance, let Σ = {a, b}, A ∈ LΣ and A = a ∧ b then A ≡Σ ¬¬A or A ∨ ¬A ≡Σ ⊤
holds true.

Let ω ∈ ΩΣ, a mapping ω[a 7→ 1] denotes the interpretation ω′ ∈ ΩΣ such that
ω′(b) = ω(b) for all atoms b that are not equal to a, and ω′(a) = 1. Similarly, ω[a 7→ 0]
denotes an interpretation ω′ with ω′(a) = 0. To express assignments of an interpreta-
tion ω, we will use a notation such that ābc means ω(a) = 0, ω(b) = 1, and ω(c) = 1,
and ab̄c̄ means ω(a) = 1, ω(b) = 0, and ω(c) = 0.

For ω ∈ ΩΣ and a ∈ Σ we denote Switch(ω, a) as the interpretation in ΩΣ that
maintains the same truth values of ω for all variables except a, but assigns the oppo-
site truth value to a compared to ω. For a subsignature Γ ⊆ Σ and an interpretation
ω ∈ ΩΣ, we denote the Γ-part of ω as ωΓ ∈ ΩΓ, mentioning exactly the atoms from
Γ. That is, ωΓ : Γ → BOOL with ωΓ(b) = ω(b) for all b ∈ Γ.

For each formula F , there exists an equivalent formula in conjunctive normal
form, denoted as Fcnf ∈ LΣ. Let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,mi}. A formula
in CNF can be represented as:

Fcnf =
n∧

i=1

mi∨
j=1

li,j

 ,

where each Ci =
∨mi

j=1 li,j denotes the i-th disjunction of literals, referred to as a
"clause".

Here, li,j represents the j-th literal in the i-th clause, and mi is the number of
literals in the clause Ci.

We represent Fcnf as a set of clauses, known as a "clause-set". Let {C1, C2, . . . , Cn}
denote the clause-set of Fcnf. Thus, Fcnf can be notated using clause sets as:

Fcnf = {{l1,1, l1,2, . . . , l1,m1}, {l2,1, l2,2, . . . , l2,m2}, . . . , {ln,1, ln,2, . . . , ln,mn}}.

A multiset is an extension of a set, denoted as {{a, a, b, c}}. While a set can contain
only one occurrence of any given element, a multiset may contain multiple occur-
rences of the same element.

We now provide some definitions related to sets, specifying the appearing vari-
ables and indicating whether an atom appears positively or negatively (as a negated
atom) in a formula.

3

Definition 4 (Sig). For a formula F ∈ LΣ and a variable a ∈ Σ, we denote Sig(F) as the
set of atomic variables that appear in F given inductively by:

• Sig(a) = {a}

• Sig(¬F) = Sig(F)

• Sig(F = G ∨H) = Sig(G) ∪ Sig(H)

• Sig(F = G ∧H) = Sig(G) ∩ Sig(H)

Example 5. Let F = ¬((a ∧ b) ∨ ¬c) in LΣ.

Sig(F) = Sig((a ∧ b) ∨ ¬c)
= Sig(a ∧ b) ∪ Sig(¬c)
= Sig(a) ∪ Sig(b) ∪ Sig(c)

= {a} ∪ {b} ∪ {c}
= {a, b, c}

Definition 6 (PosAtom and NegAtom). Let F ∈ LΣ be a formula, and let a ∈ Σ be
an atomic variable. Then PosAtom(F, a) denotes the set of positive atomic variables of the
sentence F , given inductively by:

• PosAtom(a) = {a}

• PosAtom(¬F) = NegAtom(F)

• PosAtom(F = G ∨H) = PosAtom(G) ∪ PosAtom(H)

• PosAtom(F = G ∧H) = PosAtom(G) ∩ PosAtom(H)

And NegAtom(F, a) denotes the set of negative atomic variables of the sentence F , given
inductively by:

• NegAtom(a) = ∅

• NegAtom(¬F) = PosAtom(F)

• NegAtom(F = G ∨H) = NegAtom(G) ∪NegAtom(H)

• NegAtom(F = G ∧H) = NegAtom(G) ∩NegAtom(H)

Example 7. Let F = ¬((a ∧ ¬b) ∨ ¬c) in LΣ.

PosAtom(F) = NegAtom((a ∧ ¬b) ∨ ¬c)
= NegAtom(a ∧ ¬b) ∪NegAtom(¬c)
= NegAtom(a) ∪NegAtom(¬b) ∪NegAtom(¬c)
= ∅ ∪ PosAtom(b) ∪ PosAtom(c)

= {b, c}

4

NegAtom(F) = PosAtom((a ∧ ¬b) ∨ ¬c)
= PosAtom(a ∧ ¬b) ∪ PosAtom(¬c)
= PosAtom(a) ∪ PosAtom(¬b) ∪ PosAtom(¬c)
= {a} ∪ ∅ ∪ ∅
= {a}

Finally, we provide a definition for propositional variable substitution as follows:

Definition 8 (Variable Substitution). Let F and B be formulae over LΣ where, and let
a ∈ Σ be an atomic variable. Then F [a/B] denotes the substitution of every a in F by B,
given inductively by:

• If F = a then F [a/B] = B

• If F = b and a ̸= b then F [a/B] = F

• If F = (¬F) then F [a/B] = ¬(F [a/B])

• If F = (G ∧H) then F [a/B] = G[a/B] ∧H[a/B]

• If F = (G ∨H) then F [a/B] = G[a/B] ∨H[a/B]

Example 9. Let F = a ∨ b a formula over LΣ and a, b ∈ Σ then:

F [a/⊤] = a[a/⊤] ∨ b[a/⊤]

= ⊤ ∨ b

F [a/⊥] = a[a/⊥] ∨ b[a/⊥]

= ⊥ ∨ b

1.2 Classical vs Skeptical Forget

For the notion of the classical operation, we refer to variable forgetting as described
in [LR94] and [LLM03]. We will now present both definitions for classical and skep-
tical forgetting. Through examples, we aim to provide an initial impression of the
behavior and challenges associated with both operations. We define (classical) vari-
able forgetting inductively:

Definition 10 (Variable Forgetting). Let F ∈ LΣ be a formula, let a ∈ Σ an atomic
variable and A ⊆ Σ a set of variables. The forgetting of a in F Forget(F, a), respectively,
the forgetting of A in F Forget(F,A), is given inductively by:

• Forget(F , ∅) = F

• Forget(F , {a}) = F [a/⊤] ∨ F [a/⊥]

5

• Forget(F, a) = Forget(F, {a})

• Forget(F ,A ∪ {a}) = Forget(Forget(F , {a}),A)

For some formulae F , the process of variable forgetting can yield significant re-
ductions or even drastic outcomes. To illustrate, let’s begin by examining an in-
stance where the operation Forget behaves quite appropriate. Let F1 = a ∧ b and
we choose to forget about b:

Forget(F1, b) = F1[b/⊤] ∨ F1[b/⊥]
≡Σ ((a ∧ ⊤) ∨ (a ∧ ⊥))
≡Σ (a ∨ ⊥)
≡Σ a

This demonstrates that Forget(F1 , b) simplifies to a, which intuitively aligns with
the expected outcome when forgetting about b in F1. Now, let’s explore the forget-
ting of b in the formula F2 = a ∨ b.

Forget(F2, b) = F2[b/⊤] ∨ F2[b/⊥]
≡Σ ((a ∨ ⊤) ∨ (a ∨ ⊥))
≡Σ (⊤ ∨ a)
≡Σ ⊤

We observe that Forget(F2 , b) results in a tautology, which is a drastic consequence
when singularly forgetting b. A variant of the forget operation can be defined as
follows:

Definition 11 (Skeptical Variable Forgetting). Let F ∈ LΣ be a formula , a ∈ Σ
an atomic variable and A ⊆ Σ a set of variables. The skeptical forgetting of a in F
SkepForget(F, a), respectively, the skeptical forgetting of A in F SkepForget(F ,A), is
given inductively by:

• SkepForget(F , ∅) = F

• SkepForget(F , {a}) = F [a/⊤] ∧ F [a/⊥]

• SkepForget(F, a) = SkepForget(F, {a})

• SkepForget(F ,A ∪ {a}) = SkepForget(SkepForget(F , {a}),A)

The proposal is to utilize conjunction instead of disjunction. This adjustment
leads to the following outcomes for our earlier examples:

SkepForget(F1, b) = F1[b/⊤] ∨ F1[b/⊥]
≡Σ ((a ∧ ⊤) ∧ (a ∧ ⊥))
≡Σ (a ∧ ⊥)
≡Σ ⊥

6

SkepForget(F2, b) = F2[b/⊤] ∨ F2[b/⊥]
≡Σ ((a ∨ ⊤) ∧ (a ∨ ⊥))
≡Σ (⊤ ∧ a)
≡Σ a

Upon observation, our alternative operation does not necessarily yield less drastic
results, at least in these examples. In the first case, we encounter a contradiction,
while in the second case, we arrive at an equivalent to a. This suggests a duality
between the two operations.

7

2 Syntactic Investigation and Characterization

The introductory examples in the previous section have illuminated the fundamen-
tal problem, in which variable forgetting yields drastic results such as ⊤ or ⊥ in
some cases. When simulating the "phenomena of forgetting", one might naively an-
ticipate the removal of a part of the statement while preserving the remainder. Yet,
as illustrated by the preceding examples, success is not always guaranteed. This ob-
servation directs our epistemic interest in the first place. Why do these operations
yield in tautological or contradictory outcomes? How do the top-layer connectives
in the syntax tree influence the results? What impact do deeply nested expressions
exert on the final outcome? Eventually, we will explore the semantic aspects to un-
derstand their properties. For now, however, we will begin our investigation with
a syntactical approach, systematically examining the outcomes from various sen-
tences. To derive meaningful conclusions, it is essential to select examples that fa-
cilitate generalization while maintaining specificity to preserve key properties and
characteristics. How can we identify such examples? What criteria are essential
for their selection? To understand an object and identify its properties, it can be
helpful to compare it with other entities, as this can highlight differences. For ex-
ample, comparing SkepForget with a square root operation might not make sense,
since a common denominator would be to far, to abstract. Fortunately, we have a
very similar operation already at hand that is suitable for comparison. In our case,
we want to compare our two forgetting operations to see if they behave for exam-
ple dual to each other. To explore the properties of our SkepForget operation, it
is crucial to understand the conditions under which particular results arise. Given
that propositional formulae can become very complex, and we are initially proceed-
ing empirically, we want to select examples that are reasonably representative. We
have identified several dimensions to consider. First, we need to test our operations
with various unary and binary connectives. Additionally, it is important to consider
which variable is being forgotten. For instance, with a sentence like F = (a ∨ b ∨ c),
there are three options for forgetting variables. We should also consider the position
of the variable in the syntax tree, as this may play a significant role. Let’s begin our
investigation with the following sentences:

F1 = a
F2 = ¬a

Forget(F1, a) ≡Σ ⊤
Forget(F2, a) ≡Σ ⊤

SkepForget(F1, a) ≡Σ ⊥
SkepForget(F2, a) ≡Σ ⊥

In F1 and its negation F2, we loose or forget the entire sentence itself. The result
is ⊤ for Forget and ⊥ for SkepForget, suggesting a fundamental characteristic of
each operation.

We want to briefly emphasize an interesting distinction between negation and ir-
relevance (or affirmation and relevance). In our context, forgetting a variable doesn’t
merely erase its truth values; it erases the ability to even refer to the variable itself.

8

Without a notion or signifier for it, we cannot assert its falsity. For example we
can not ask the question wether a is true or is false within a possible world. In the
case of SkepForget(F1, a), the variable a effectively ceases to exist; our statement
SkepForget(F1, a) no longer addresses a at all. We will later see that this may not
hold true depending on the signature under which we observe the formula, but we
find it a noteworthy point to consider.

Before we delve into more complex sentences, let’s examine a special edge case:

F1 = (a ∧ ¬a) ≡Σ ⊥
F2 = (a ∨ ¬a) ≡Σ ⊤

Forget(F1, a) ≡Σ ⊥
Forget(F2, a) ≡Σ ⊤

SkepForget(F1, a) ≡Σ ⊥
SkepForget(F2, a) ≡Σ ⊤

In this case, we observe a drastic result, as discussed, primarily because the origi-
nal formula is already a tautology or a contradiction. We also note that F1, Forget(F1, a)
and SkepForget(F1, a) are equivalent. The same holds for F2, Forget(F2, a) and
SkepForget(F2, a).

Now, let’s investigate the behavior with more complex sentences that include
other variables besides a.

F1 = (a ∧ b)
F2 = ¬(a ∧ b)
F3 = (a ∨ b)
F4 = ¬(a ∨ b)

Forget(F1, a) ≡Σ b
Forget(F2, a) ≡Σ ⊤
Forget(F3, a) ≡Σ ⊤
Forget(F4, a) ≡Σ ¬b

SkepForget(F1, a) ≡Σ ⊥
SkepForget(F2, a) ≡Σ ¬b
SkepForget(F3, a) ≡Σ b
SkepForget(F4, a) ≡Σ ⊥

We observe that Forget(F1, a) ≡Σ ¬(SkepForget(F2, a)). Given F1 ≡Σ ¬F2,
we derive Forget(F1, a) ≡ ¬SkepForget(¬F1, a). Similarly, ¬F1 ≡Σ F2 leads to
Forget(¬F2, a) ≡Σ ¬SkepForget(F2, a). More general, we can establish the equiva-
lence:

Proposition 12 (De Morgan Relation). For any formula F ∈ LΣ and variable a ∈ Σ, we
have:

¬Forget(F, a) ≡Σ SkepForget(¬F, a)
Forget(¬F, a) ≡Σ ¬SkepForget(F, a)

Proof.

¬Forget(F, a) = ¬(F [a/⊤] ∨ F [a/⊥])

≡Σ ¬F [a/⊤] ∧ ¬F [a/⊥]

≡Σ SkepForget(¬F, a)

Forget(¬F, a) = ¬F [a/⊤] ∨ ¬F [a/⊥]

≡Σ ¬(F [a/⊤] ∧ F [a/⊥])

≡Σ ¬SkepForget(F, a)

9

We have now established our first property. However, when it comes to regular
negation, SkepForget (as well as Forget) does not hold true as we can demonstrate:

Proposition 13 (Negation). There is a formula F = ¬A over LΣ and variable a ∈ Σ, the
following holds:

SkepForget(F, a) ̸≡Σ ¬SkepForget(A, a).

Proof. Let F ∈ LΣ and a ∈ Σ. There is a formula F = ¬A with A = a such that

SkepForget(¬A, a) ≡Σ ⊥ and ¬SkepForget(A, a) ≡Σ ¬⊥.

Thus,
SkepForget(¬A, a) ̸≡Σ SkepForget(A, a).

Note that consequently the following does not hold for all formulae:

SkepForget(F, a) ≡Σ ¬SkepForget(A, a).

Let’s continue the investigation with a focus on binary connectives:

F1 = (a ∧ b)
F2 = (a ∨ b)

Forget(F1, a) ≡Σ b
Forget(F2, a) ≡Σ ⊤

SkepForget(F1, a) ≡Σ ⊥
SkepForget(F2, a) ≡Σ b

In F1 and F2, we selectively forget one variable of a binary connective. Given the
commutativity of logical connectives, forgetting the other variable does not intro-
duce new information. Consequently, both forget operations result in either ⊤ or
⊥, or the retention of the variable b. This comparison reveals a dualistic behavior
between the two operations. A necessary condition appears to be the connective
itself. We notice that Forget with ∧ yields ⊥, whereas in combination with ∨, we
obtain b. For SkepForget, it’s the opposite, including the constant being ⊤, which
is the inverse. In summary, in two cases, we lose exactly the variable we expect to
lose. In the other two cases, we lose more information than expected.

If we compare the outcomes with the original sentences, we observe that from
F1, we can derive b, whereas this is not necessarily true for F2. Conversely, from b,
we can derive F2. Furthermore, it’s noteworthy that ⊤ can always be derived from
any sentence because we can disjunct its negation, and from ⊥, any sentence can
be derived. Once again, we encounter a dualistic behavior, this time concerning the
direction of entailment—both from the original sentence to the forgotten sentence
and vice versa. We will also discuss this later in section 4.4.

Let’s explore whether this pattern holds true with more complex or longer sen-
tences:

F1 = (a ∧ (c ∧ d))
F2 = (a ∧ (c ∨ d))
F3 = (a ∨ (c ∧ d))
F4 = (a ∨ (c ∨ d))

Forget(F1, a) ≡Σ (c ∧ d)
Forget(F2, a) ≡Σ (c ∨ d)
Forget(F3, a) ≡Σ ⊤
Forget(F4, a) ≡Σ ⊤

SkepForget(F1, a) ≡Σ ⊥
SkepForget(F2, a) ≡Σ ⊥
SkepForget(F3, a) ≡Σ (c ∧ d)
SkepForget(F4, a) ≡Σ (c ∨ d)

10

When we introduce additional complexity by adding one more connective, it ap-
pears that due to the inductive or recursive structure of logic formulae, we still ob-
serve the same dualistic result as in the previous example. In half of the cases, we
lose exactly what we expect, while in the other half, we lose more information.

Let’s examine if this pattern persists when we introduce one more atomic variable.

F1 = ((a ∧ b) ∧ (c ∧ d))
F2 = ((a ∧ b) ∧ (c ∨ d))
F3 = ((a ∧ b) ∨ (c ∧ d))
F4 = ((a ∧ b) ∨ (c ∨ d))
F5 = ((a ∨ b) ∧ (c ∧ d))
F6 = ((a ∨ b) ∧ (c ∨ d))
F7 = ((a ∨ b) ∨ (c ∧ d))
F8 = ((a ∨ b) ∨ (c ∨ d))

Forget(F1, a) ≡Σ (b ∧ (c ∧ d))
Forget(F2, a) ≡Σ (b ∧ (c ∨ d))
Forget(F3, a) ≡Σ (b ∨ (c ∧ d))
Forget(F4, a) ≡Σ (b ∨ (c ∨ d))
Forget(F5, a) ≡Σ (c ∧ d)
Forget(F6, a) ≡Σ (c ∨ d)
Forget(F7, a) ≡Σ ⊤
Forget(F8, a) ≡Σ ⊤

SkepForget(F1, a) ≡Σ ⊥
SkepForget(F2, a) ≡Σ ⊥
SkepForget(F3, a) ≡Σ (c ∧ d)
SkepForget(F4, a) ≡Σ (c ∨ d)
SkepForget(F5, a) ≡Σ (b ∧ (c ∧ d))
SkepForget(F6, a) ≡Σ (b ∧ (c ∨ d))
SkepForget(F7, a) ≡Σ (b ∨ (c ∧ d))
SkepForget(F8, a) ≡Σ (b ∨ (c ∨ d))

Once again, we can observe a split, this time between F4 and F5. However, on
each side of the group of drastic results, we notice that there are now partially less
drastic outcomes. These can again be categorized into halves. It appears that the
recurring pattern is related to the recursive structure of the syntax tree. Addition-
ally, it seems that the connective that connects the forgotten variable, as well as the
subsequent connectives, have a significant impact on the outcome.

Now, let’s examine forgetting different variables within the same sentences. For a
sentence a∧(b∨c), we have three options, but only two layers in depth. Considering
the commutativity of logical connectives, we can reduce this to two options.

F1 = (a ∧ (b ∧ c))
F2 = (a ∧ (b ∨ c))
F3 = (a ∨ (b ∧ c))
F4 = (a ∨ (b ∨ c))

Forget(F1, a) ≡Σ (b ∧ c)
Forget(F2, a) ≡Σ (b ∨ c)
Forget(F3, a) ≡Σ ⊤
Forget(F4, a) ≡Σ ⊤

SkepForget(F1, a) ≡Σ ⊥
SkepForget(F2, a) ≡Σ ⊥
SkepForget(F3, a) ≡Σ (b ∧ c)
SkepForget(F4, a) ≡Σ (b ∨ c)

F1 = (a ∧ (b ∧ c))
F2 = (a ∧ (b ∨ c))
F3 = (a ∨ (b ∧ c))
F4 = (a ∨ (b ∨ c))

Forget(F1, c) ≡Σ (a ∧ b)
Forget(F2, c) ≡Σ a
Forget(F3, c) ≡Σ (a ∨ b)
Forget(F4, c) ≡Σ ⊤

SkepForget(F1, c) ≡Σ ⊥
SkepForget(F2, c) ≡Σ (a ∧ b)
SkepForget(F3, c) ≡Σ a
SkepForget(F4, c) ≡Σ (a ∨ b)

Once again, in half of the cases, we lose exactly what we expect to lose. More-
over, the outcomes exhibit further distinctions: the variable a, positioned in the top
layer, yields the most significant consequences, whereas the deeper nested variable
c results in less drastic information loss.

Thus far, our examination has been limited to formulae composed solely of atoms.
Now, we aim to broaden our scope to include more general sentences. Specifically,
we want to determine if SkepForget is compatible under conjunction and disjunc-
tion, meaning we need to investigate whether we can "pull" out logical connectives
from our SkepForget operator. As for negation, we have already demonstrated its
incompatibility in Proposition 13.

11

Proposition 14 (Conjunction). Let F = A ∧B a formula over LΣ and variable a ∈ Σ, it
holds that:

SkepForget(F, a) ≡Σ SkepForget(A, a) ∧ SkepForget(B, a).

Proof. Let F ∈ LΣ and let a ∈ Σ.

SkepForget(F, a) = F [a/⊤] ∧ F [a/⊥]

≡Σ (A[a/⊤] ∧B[a/⊤]) ∧ (A[a/⊥] ∧B[a/⊥])

≡Σ A[a/⊤] ∧A[a/⊥] ∧B[a/⊤] ∧B[a/⊥]

≡Σ SkepForget(A, a) ∧ SkepForget(B, a)

Proposition 15 (Disjunction). There is a formula F = A ∨ B over LΣ and a variable
a ∈ Σ, for which the following holds:

SkepForget(F, a) ̸≡Σ SkepForget(A, a) ∨ SkepForget(B, a)

Note that the following does not hold for all formulae:

SkepForget(F, a) ≡Σ SkepForget(A, a) ∨ SkepForget(B, a).

Proof. Let F = (A ∨ B) ∈ LΣ and let a ∈ Σ. If A = ¬a and B = (a ∨ b), then
SkepForget(F, a) ≡Σ ⊤, SkepForget(A, a) ≡Σ ⊥, and SkepForget(B, a) ≡Σ b. Con-
sequently,

SkepForget(A, a) ∨ SkepForget(B, a) ̸≡Σ SkepForget(F, a).

As Proposition 15 shows, conversely to Forget, SkepForget is compatible under
conjunction but incompatible under disjunction. By imposing certain constraints,
we can formally state that:

Proposition 16 (Disjunction Constrained). Let F ∈ LΣ, a variable a ∈ Σ where F =
A ∨B and where a ̸∈ Sig(B), the following holds:

SkepForget(F, a) ≡Σ SkepForget(A, a) ∨B.

Proof. Let F ∈ LΣ, a variable a ∈ Σ where F = A ∨ B and where a ̸∈ Sig(B). First
observe that if a ̸∈ Sig(B) we have B[a/⊤] ≡Σ B[a/⊥] ≡Σ B.

SkepForget(F, a) = F [a/⊤] ∧ F [a/⊥]

≡Σ (A[a/⊥] ∨B[a/⊥]) ∧ (A[a/⊤] ∨B[a/⊤])

≡Σ (A[a/⊥] ∨B) ∧ (A[a/⊤] ∨B)

≡Σ (A[a/⊥] ∧A[a/⊤]) ∨B

≡Σ SkepForget(A, a) ∨B

12

2.1 Behavior of Truth Values in Syntax Trees

As hinted in the previous section, we suspect a correlation between the syntactic
structure, the connectives, and the outcomes of the operations. Therefore, we aim
to examine the syntax trees more closely to potentially gain further insights. Let us
first investigate the relationship between syntax trees and the constants ⊤ and ⊥ in
general.

We know that ⊤ ∧ ⊥ ≡ ⊥, and ⊤ ∨ ⊥ ≡ ⊤. Syntax trees provide an excellent
way to visualize sentences. To gain a comprehensive overview, we will explore all
permutations of connectives over a given variable count n, which results in 2(n−1)

possibilities.

∧

∧

⊤ b

c

∨

∧

⊤ b

c

∧

∨

⊤ b

c

∨

∨

⊤ b

c

((⊤∧ b) ∧ c) ≡Σ (b ∧ c) ((⊤ ∧ b) ∨ c) ≡Σ (b ∨ c) ((⊤∨ b) ∧ c) ≡Σ c ((⊤∨ b) ∨ c) ≡Σ ⊤

Figure 1: ⊤ Propagation

In figure 1 we can observe the bottomup propagation of ⊤. Starting from the leafes
⊤ effectively "absorbs" all siblings in conjunction with ∨ and stops propagating at ∧.

∧

∧

⊥ b

c

∨

∧

⊥ b

c

∧

∨

⊥ b

c

∨

∨

⊥ b

c

((⊥∧ b) ∧ c) ≡Σ ⊥ ((⊥ ∧ b) ∨ c) ≡Σ c ((⊥∨ b) ∧ c) ≡Σ (b ∧ c) ((⊥ ∨ b) ∨ c) ≡Σ (b ∨ c)

Figure 2: ⊥ Propagation

Figure 2 demonstrates, in a manner dual to Figure 1, how ⊥ "annihilates" all sib-
lings when paired with a logical ∧ and halts at ∨. This dynamic interaction suggests

13

that logical constants have the capability to selectively "eliminate" variables and en-
tire propositions.

Let us now examine syntax trees for our forget operations over specific formulae.
On the left, we display Forget, and on the right, SkepForget.

∨

∨

∧

⊤ b

c

∨

∧

⊥ b

c

∧

∨

∧

⊤ b

c

∨

∧

⊥ b

c

Forget((a ∧ b) ∨ c, a) ≡Σ (b ∨ c) SkepForget((a ∧ b) ∨ c, a) ≡Σ c

Figure 3: Forgetting a in (a ∧ b) ∨ c

∨

∨

∧

a b

⊤

∨

∧

a b

⊥

∧

∨

∧

a b

⊤

∨

∧

a b

⊥

Forget((a ∧ b) ∨ c, c) ≡Σ ⊤ SkepForget((a ∧ b) ∨ c, c) ≡Σ (a ∧ b)

Figure 4: Forgetting c in (a ∧ b) ∨ c

14

∨

∧

∧

⊤ b

c

∧

∧

⊥ b

c

∧

∧

∧

⊤ b

c

∧

∧

⊥ b

c

Forget((a ∧ b) ∧ c, a) ≡Σ (b ∧ c) SkepForget((a ∧ b) ∧ c, a) ≡Σ ⊥

Figure 5: Forgetting a in (a ∧ b) ∧ c

We can observe that, due to the definition of the forget operations, we essentially
have two branches. Ultimately, the truth value is determined at the topmost con-
nective. Forget allows a model if only one of the two branches is true, whereas
SkepForget requires both branches to be true. As we have already noted, ⊤ or ⊥
are propagated upwards; the more complex or lengthy the formula, the more possi-
bilities there are to "hold back" logical constants and retain information.

At this point we do not see any other way to predict whether and how much
information is lost, except by examining the specific logical connectives. Extreme
cases arise with SkepForget when we only have conjunctions, while with Forget,
it’s disjunctions. Adding negation further complicates the matter. Let us expand our
syntactic investigation and explore skeptical forgetting in the context of conjunctive
normal form (CNF) in the following subsection.

2.2 Skeptical Forgetting and CNF

Let F ∈ LΣ. For all formulae F , there exists an equivalent formula in conjunctive
normal form, denoted as Fcnf ∈ LΣ. For each clause Ci in Fcnf, where i ∈ {1, 2, . . . , n}
(with n being the total number of clauses), and each literal liti,j within Ci, where
j ∈ {1, 2, . . . ,mi} (with mi being the number of literals in the i-th clause), we denote
liti,j as a literal that does not contain the propositional variable a.

For instance:

Fcnf = a ∧ ¬a ∧ (¬a ∨ lit1,1 ∨ lit1,2) ∧ (a ∨ liti,j ∨ liti,j+1) ∧ . . . ∧ (a ∨ ¬a ∨ litn,mn).

15

For every clause in Fcnf, we can due to commutativity, group similar clauses. For
clauses containing disjunctions of a, ¬a, or both, we can isolate ("pull out") a, ¬a, or
(a ∨ ¬a) using the distributive law. Assuming we have all possible connections of
a-literals with liti,j , we can categorize the clauses as follows:

• "a-Single" for a single a, respectively "¬a-Single" for a single ¬a.

• "a-Group", "¬a-Group", and "Both" for parts where liti,j disjunctions appear
with a or ¬a or (a ∨ ¬a).

• "None" for clauses without any a-literals, only liti,j disjunctions.

We split n into n1, n2, n3, and n4, representing the number of clauses in each cate-
gory. Expressed as a CNF formula, we obtain:

Fcnf = a︸︷︷︸
a-Single

∧ ¬a︸︷︷︸
¬a-Single

∧

a ∨

 n1∧
i=1

mi∨
j=1

liti,j


︸ ︷︷ ︸

a-Group

∧

¬a ∨

 n2∧
i=1

mi∨
j=1

liti,j


︸ ︷︷ ︸

¬a-Group

∧

(a ∨ ¬a) ∨

 n3∧
i=1

mi∨
j=1

liti,j


︸ ︷︷ ︸

Both

∧

 n4∧
i=1

mi∨
j=1

liti,j


︸ ︷︷ ︸

None

.

Let’s represent these grouped clauses in a simpler form as follows:

Fcnf = Sa ∧ S¬a ∧Ga ∧G¬a ∧Gboth ∧Gnone.

Now that we have separated a in all possible forms, we can examine it under the
skeptical forgetting operation:

SkepForget(Fcnf, a) = SkepForget(Sa ∧ S¬a ∧Ga ∧G¬a ∧Gboth ∧Gnone, a).

In Proposition 14 we have shown that SkepForget is compatible under conjunction,
hence we can transform such that:

SkepForget(Fcnf , a) =SkepForget(Sa, a) ∧ SkepForget(S¬a, a)∧ (*)
SkepForget(Ga, a) ∧ SkepForget(G¬a, a)∧
SkeptForget(Gboth, a) ∧ SkepForget(Gnone, a).

16

First, let’s simplify each conjunctive forget formula within the previous sentence
under (*):

SkepForget(Sa, a) = (Sa[a/⊥] ∧ Sa[a/⊤]) (R1)
≡Σ ⊥ ∧⊤
≡Σ ⊥

SkepForget(S¬a, a) = (S¬a[a/⊥] ∧ S¬a[a/⊤]) (R2)
≡Σ ¬⊥ ∧ ¬⊤
≡Σ ⊤ ∧⊥
≡Σ ⊥

SkepForget(Ga, a) = (Ga[a/⊥] ∧Ga[a/⊤]) (R3)

≡Σ (⊥ ∨
n1∧
i=1

(

mi∨
j=1

liti,j)) ∧ (⊤ ∨
n1∧
i=1

(

mi∨
j=1

liti,j))

≡Σ (

n1∧
i=1

(

mi∨
j=1

liti,j)) ∧ ⊤

≡Σ

n1∧
i=1

(

mi∨
j=1

liti,j)

SkepForget(G¬a, a) = (G¬a[a/⊥] ∧G¬a[a/⊤]) (R4)

≡Σ (¬⊥ ∨
n2∧
i=1

(

mi∨
j=1

liti,j)) ∧ (¬⊤ ∨
n2∧
i=1

(

mi∨
j=1

liti,j))

≡Σ (⊤ ∨
n2∧
i=1

(

mi∨
j=1

liti,j)) ∧ (⊥ ∨
n2∧
i=1

(

mi∨
j=1

liti,j))

≡Σ ⊤ ∧ (⊥ ∨
n2∧
i=1

(

mi∨
j=1

liti,j))

≡Σ

n2∧
i=1

(

mi∨
j=1

liti,j)

17

SkepForget(Gboth, a) = ⊤ (R5)

SkepForget(Gnone, a) = Gnone (R6)

SkepForget(Fcnf , a) =SkepForget(Sa, a) ∧ SkepForget(S¬a, a)∧ (*)
SkepForget(Ga, a) ∧ SkepForget(G¬a, a)∧
SkeptForget(Gboth, a) ∧ SkepForget(Gnone, a).

We substitute the equation under (*) with results (R1-R6) and obtain:

SkepForget(Fcnf , a) ≡Σ ⊥︸︷︷︸
Case A

∧ ⊥︸︷︷︸
Case B

∧
n1∧
i=1

mi∨
j=1

liti,j


︸ ︷︷ ︸

Case C

∧
n2∧
i=1

mi∨
j=1

liti,j


︸ ︷︷ ︸

Case D

∧ ⊤︸︷︷︸
Case F

∧Gnone︸ ︷︷ ︸
Case G

Note that these groups of clauses may or may not appear in a specific sentence;
therefore, we treat them as distinct cases, but they are not mutually exclusive. To
simplify our analysis, equivalent cases of clause-groups are combined: Case A and
Case B merge into Case 1, Case C and Case D combine into Case 2, Case F becomes
Case 3, and Case G is designated as Case 4. Thus, we simplify to:

SkepForget(Fcnf , a) ≡Σ ⊥︸︷︷︸
Case 1

∧
n1+n2∧
i=1

mi∨
j=1

liti,j


︸ ︷︷ ︸

Case 2

∧ ⊤︸︷︷︸
Case 3

∧Gnone︸ ︷︷ ︸
Case 4

.

We can specify the conditions under which these cases occur. If Fcnf includes a
clause where:

• a is the sole literal (a or ¬a), then Case 1 occurs.

• a appears as a literal in conjunction with other literals liti,j , but not with its
complement, then Case 2 occurs.

• a ∨ ¬a appears, possibly alongside other literals liti,j , then Case 3 occurs.

• a does not appear at all in any clause, then Case 4 occurs.

Now, we gain insight into the scenarios where we obtain drastic results (⊥ or ⊤)
from SkepForget. Let Fcnf denote the CNF of F , and let CSFcnf

represent its clause
set:

18

• If CSFcnf
∩ {a,¬a} = ∅ then SkepForget(F, a) ≡Σ ⊤.

• If {a} ∈ CSFcnf
or {¬a} ∈ CSFcnf

then SkepForget(F, a) ≡Σ ⊥.

In situations where only Case 2 and/or Case 4 appear, no drastic results are
yielded. As observed, we found a way to determine, via the clause set CSFcnf

,
whether a drastic result (⊥ or ⊤) will be entailed from SkepForget(F, a). Now, let’s
move away from the CNF topic and provide one final syntactic characterization or
simplification for this part of the thesis.

For sentences subsentences that are in the form F = a ◦G and where a ̸∈ Sig(G).
We can give following characterization:

Proposition 17. Let a ∈ Σ. Let F ∈ LΣ be in such a form F = a ◦G (or ¬a ◦G) where ◦
is either ∧ or ∨ and where a ̸∈ Sig(G) then the following holds:

• Forget(F, a) = ⊤ ◦G

• SkepForget(F, a) = ⊥ ◦G

Proof. Let F ∈ LΣ, a ∈ Σ and let ◦ be ∧ or ∨.

Forget(F, a) = F [a/⊤] ∨ F [a/⊥]

≡Σ (⊥ ◦G) ∨ (⊤ ◦G)

≡Σ (⊥ ∨⊤) ◦G
≡Σ ⊤ ◦G

SkepForget(F, a) = F [a/⊤] ∧ F [a/⊥]

≡Σ (⊥ ◦G) ∧ (⊤ ◦G)

≡Σ (⊥ ∧⊤) ◦G
≡Σ ⊥ ◦G

We can extend Proposition 17 to the following:

Proposition 18. Let a ∈ Σ. If we have a sentence F ∈ LΣ in such a form F = (a◦1G)◦2H
(or ¬a ◦1 G ◦2 H) where ◦1 and ◦2 is either ∧ or ∨ and where a ̸∈ Sig(G) and ̸∈ Sig(H)
then:

• Forget(F, a) = Forget(a ◦1 G, a) ◦2 H = (⊤ ◦1 G) ◦2 H

• SkepForget(F, a) = SkepForget(a ◦1 G, a) ◦2 H = (⊥ ◦1 G) ◦2 H

19

Proof. Let F ∈ LΣ, a ∈ Σ and let ◦1, ◦2 be ∧ or ∨.

Forget(F, a) = F [a/⊤] ∨ F [a/⊥]

≡Σ ((⊥ ◦1 G) ◦2 H) ∨ ((⊤ ◦1 G) ◦2 H)

≡Σ ((⊥ ◦1 G) ∨ (⊤ ◦1 G)) ◦2 H
≡Σ Forget((a ◦1 G), a) ◦2 H
≡Σ (⊤ ◦1 G) ◦2 H

SkepForget(F, a) = F [a/⊤] ∧ F [a/⊥]

≡Σ ((⊥ ◦1 G) ◦2 H) ∧ ((⊤ ◦1 G) ◦2 H)

≡Σ ((⊥ ◦1 G) ∧ (⊤ ◦1 G)) ◦2 H
≡Σ SkepForget((a ◦1 G), a) ◦2 H
≡Σ (⊥ ◦1 G) ◦2 H

We have observed how forget operations behave at the syntactic level. To elimi-
nate a variable, it is replaced by a constant. This process "flattens out" the distinction
that a variable holds regarding its truth values. In one scenario, it universally holds
true, becoming a tautology; in another, it universally holds false, becoming a con-
tradiction. Recognizing the implications for truth values, we now intend to expand
our investigation to the semantic level in the subsequent sections.

20

3 Semantic Investigation

In this section, our aim is to develop a straightforward understanding or intuition
regarding how our variable forgetting operates at a semantic level. Fortunately,
our exploration is confined to propositional logic, where truth tables offer a clear
depiction of truth value assignments across all possible interpretations or worlds.

3.1 Reduction of Signature

We observe that through the process of forgetting, at least one variable is substituted
by constants such as ⊤ and ⊥. This raises the pertinent question: What happens to
the signature over which our formulae are defined? If the variable is no longer
necessary, does it become redundant? Is there any further significance to this re-
dundancy? To explore this question, let us consider a sentence F = (a ∧ b) over a
language LΣ.

a b F Forget(F, a) ≡Σ b SkepForget(F, a) ≡Σ ⊥
0 0 0 0 0
0 1 0 1 0
1 0 0 0 0
1 1 1 1 0

Figure 6: Crossed Out Variable a

Figure 6 shows the respective equivalences of the two forget operations, namely
b and ⊥, indicating that the variable a no longer "plays a role". To illustrate this, we
have crossed out a in the table with a red line. Our signature Σ = {a, b} has now
been reduced to a subset of Σ. We denote this subset as a subsignature Γ ⊆ Σ. Since
a variable has been crossed out, can we omit it entirely? Let’s examine the truth
tables of our reduced signatures.

b Forget(F, a) ≡Γ1 b

0 0
1 1

SkepForget(F, a) ≡Γ2 ⊥
0
0

Figure 7: Collapsed Truth Tables

In Figure 7, we see that the resulting signatures are Γ1 = {b} for Forget(F, a) and
Γ2 = ∅ for SkepForget(F, a) with respect to F .

We observe that we can consider formulae under an extended (super) signature.
For instance, we can consider Forget(F, a) under Γ, but as shown in Figure 6, we
can also consider it under the extended signature Σ. For example we can give
the models of Forget(F, a) in two regards: ModΣ(Forget(F, a)) = {āb, ab} and
ModΓ(Forget(F, a)) = {b}. It should be noted that we cannot consider F under
the smaller signature Γ, as F mentions a variable that is not included in Γ.

21

To formally describe signatures, we denoted Sig(F) as the set of atomic variables
that appear in F . Now, consider a formula G = ⊥ ∧ b, which is equivalent to
SkepForget(F, a). Then we have Sig(F) = {b}, even though we know that G ≡Σ ⊥
and hence the signature should be empty? What we need here is a notion of the
minimal signature of a formula.

In [SBKI24], the authors provide the possibility through the following proposi-
tion:

Proposition 19 (Minimal Signature [SBKI24]). Let F ∈ LΣ then Sigmin(F) is the set
of those atoms that distinguish models of F from non-modelsof F by exactly one signature
element.

Sigmin(F) = {a ∈ Σ | ∃ω1, ω2 ∈ Ω. ω1 |=Σ F and ω2 ̸|=Σ F and ω
Σ\{a}
1 = ω

Σ\{a}
2 }.

Example 20. Let G = Forget(F, a) over LΣ. The pair of interpretations that are the same
except for one variable and the following holds: ω1 |=Σ G and ω2 ̸|=Σ G.

• ω1(a) = 1, ω1(b) = 1 and ω2(a) = 1, ω2(b) = 0

• ω1(a) = 0, ω1(b) = 1 and ω2(a) = 0, ω2(b) = 0

Intuitively, one can say: b is necessary or relevant to be a model of G. Therefore,
the result is Sigmin(G) = {b}, which is also equal to Γ1 in Figure 7. Essentially,
we exclude all irrelevant variables from the signature and retain the relevant ones.
Now, let’s assume G = SkepForget(F, a). We cannot find any ω ∈ ModΣ(G), hence
Sigmin(G) = ∅, which is equal to Γ2 in Figure 7.

Indeed, we now observe that through the forgetting of variables, the signature
gradually shrinks as more variables are forgotten, until we reach the extreme case
of Γ = ∅. This behavior is expected and desired from our perspective.

Another intriguing side point arises when we examine formulae such as Forget(F, a)
or more precisely through a substitution like F [a/⊥]. From a purely "symbolic" per-
spective, a appears in the string ”F [a/⊤]”. However, the equivalence of the formula
F [a/⊤] disregards a, as we see F [a/⊥] ≡Σ ⊥ ∧ b.

3.2 Ambiguities

In general, when examining interpretations in a truth table, each assignment or truth
value of a variable serves as a crucial criterion for distinguishing one interpretation
from another. However, as we saw in the previous section, it must be noted that not
every variable is necessarily required to satisfy a particular formula.

Forgetting implies that after the "act of forgetting", the information is no longer
available to us. Applied to our context, we can observe that this principle is reflected
in the behavior of our two forgetting approaches. When we forget a variable a ∈ Σ in
a formula F ∈ LΣ, we observe that after applying the operation, the forget formula

22

SkepForget(F, a) (or Forget(F, a)) no longer "speaks" about a. As discussed in the
previous section, their interpretations can be represented in or mapped to ΩΓ, where
Γ ⊆ Σ. Since our variable forgetting suppresses the variable a, rendering its truth
values as irrelevant, ambiguities arise. We can no longer determine how or which
interpretations from ω ∈ ΩΣ should be mapped to ΩΓ. Because, originally, these
interpretations depended on the truth value {1, 0} of a, we have two reduction or
mapping possibilities: one where a was 1, and one where a was 0.

Option 1:
a b F1

0 0 0
0 1 0
1 0 0
1 1 1

Option 2:

a b F1

0 0 0
0 1 0
1 0 0
1 1 1

Figure 8: Collapse Options

In Figure 8 we observe that there are two interpretations that yield the same truth
value for a and we cannot ascertain which pair should be retained in order to make a
"indifferent". The question arises: Is there a "correct" reduction here, or is it a matter
of contingent definition? We anticipate that our two forgetting operations resolve
this ambiguity in different ways, which we will demonstrate in the next section.

3.3 Two ways to resolve the Ambiguity

Through a simple example, we have already gained significant insights into the
behavior of both operations: the reduction of the signature and the emergence of
ambiguity. We now wish to examine how our two operations represent forgetting
differently, with a greater focus on the actual truth values rather than the signature.
Additionally, we intend to consider more complex examples and observe their be-
havior. Consider the truth values in a specific example for a formula F = (a ∧ b)
over LΣ.

23

a b F Forget(F, a) ≡Σ b SkepForget(F, a) ≡Σ ⊥
0 0 0 0 0
0 1 0 1 0
1 0 0 0 0
1 1 1 1 0

Figure 9: Two mapping Patterns

As illustrated in Figure 9, we observe two mappings. Firstly, we see that the
truth values of F for all ω ∈ Mod(a) are essentially mapped to all interpretations of
Forget(F, a). Similarly, we observe the same for ω ̸∈ Mod(a) in relation to F and
SkepForget(F, a).

a b c d F Forget(F, a) ≡Σ (b ∨ (c ∧ d)) SkepForget(F, a) ≡Σ (c ∧ d)

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 1 1 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 1 1 1 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 0
1 1 1 1 1 1 1

Figure 10: More complex Example

In Figure 10 that the same pattern holds for more complex sentences F = (a∧ b)∨
(c ∧ d) as well, but i does not hold for negation, lets say F = ¬(a ∧ b) as we can see
in the following figure.

a b ¬F Forget(¬F, a) ≡Σ ⊤ SkepForget(¬F, a) ≡Σ ¬b
0 0 1 1 1
0 1 1 1 0
1 0 1 1 1
1 1 0 1 0

Figure 11: Negation Example

24

As illustrated in Figure 11, under negation, there is a notable "swap" pattern be-
tween the operations compared to the previous patterns.

We have observed that both operations exhibit a distinct mapping pattern. The
mapping is not precisely identical but suggests a dual relationship. We also observe
a specific duplication effect. In the next section, we will delve deeper into this phe-
nomenon.

25

4 Semantic Characterization

Up to this point, we observed and analyzed the behavior of our object of interest.
Building upon these intuitions, our next objective is to develop comprehensive se-
mantic characterizations.

4.1 ⊤ and ⊥ Substitutions

In both classical and skeptical variable forgetting, we utilize, by definition, the sub-
stitution of a variable by logical constants, such as F [a/⊤] and F [a/⊥]. To address
the semantic properties of SkepForget (and Forget), let’s first specifically examine
the semantic properties of these substitutions to gain foundational knowledge to
build upon.

Consider three formulae F1 = ¬a, F2 = a ∧ b, and F3 = a ∨ b over the language
LΣ. We will compare the truth values of the a-substitutions of each formula with ⊤
and ⊥ using a truth table.

a b F1 F2 F3 F1[a/⊤] F2[a/⊤] F3[a/⊤] F1[a/⊥] F2[a/⊥] F3[a/⊥]

0 0 1 0 0 0 0 1 1 0 0
0 1 1 0 1 0 1 1 1 0 1
1 0 0 0 1 0 0 1 1 0 0
1 1 0 1 1 0 1 1 1 0 1

Figure 12: Behaviour of Substitutions

In Figure 12, we have arranged the columns based on the truth values of the "vari-
able to be forgotten" to visually highlight specific patterns. The red axis separates
the truth values of a. By examining these patterns, we can observe how the substi-
tutions relate to their original forms (F1-F3). Let’s focus on F1[a/⊤]-F3[a/⊤], indi-
cated in blue. When we observe interpretations where ω(a) = 1, we notice that the
same truth values are "duplicated" across interpretions where ω(a) = 0. The same
group of truth values correspond to their respective sentences of origin (F1 − F3).
Conversely, for F1[a/⊥]-F3[a/⊥], we observe a similar but reversed pattern. This
duplication echoes the pattern discussed in the previous section. To gain deeper
insights into why certain interpretations are duplicated, let us explore the seman-
tic sets for substitutions, namely {ω | ω[a 7→ 1]} for F [a/⊤] and {ω | ω[a 7→ 0]} for
F [a/⊥]. Given that our truth values are bivalent ({0,1}), for each variable assignment
we have two possibilities or interpretations. Now, if we map a single truth value to
each and therefore "override" the two complementary assigments, duplication "nat-
urally" arises. From this standpoint, the mapping results in duplication, while from
another viewpoint, it represents the reduction we discussed earlier. Essentially, we
consolidate two interpretations into one.

We observe that we still retain all the necessary information to reconstruct our
sentences from the substitutions. Trivially, the set of all interpretations results as

26

Ω = {ω | ω |=Σ a ∪ ω ̸|=Σ a}. We can formally reconstruct and "reassemble"
ModΣ(F) from the substitutions as follows:

• ModΣ(F) = {ω | ω |=Σ F [a/⊤], ω |= a} ∪ {ω | ω |=Σ F [a/⊥], ω ̸|=Σ a}

• ModΣ(F) = {ω | ω[a 7→ 1] |=Σ F or ω[a 7→ 0] |=Σ F}

To sum it up:

• ModΣ(F [a/⊤]) contains all models ω where either ω(a) = 1 or where a is
irrelvant for ω |=Σ F .

• ModΣ(F [a/⊥]) contains all models ω where either ω(a) = 0 or where a is
irrelvant for ω |=Σ F .

Now, before we proceed to the next section, let us provide a semantic characteri-
zation of the syntactic definition of substitutions.

Proposition 21 (Semantic characterization of ⊤ Substituion). Let ω ∈ ΩΣ, F ∈ LΣ be
a formula and a a variable over Σ.

ModΣ(F [a/⊤]) = {ω | ω[a 7→ 1] |=Σ F}.

Proof. By structural induction of F ∈ LΣ, we can show ModΣ(F [a/⊤]) = {ω | ω[a 7→
1] |=Σ F} holds.

Base case: F = a. Then, we have F [a/⊤] ≡Σ ⊤. Consequently we optain:

ModΣ(F [a/⊤]) = ModΣ(⊤) = Ω

We show that ModΣ(F [a/⊤]) = {ω | ω[a 7→ 1] |=Σ F} holds:

⊆ Direction: Let ω ∈ ModΣ(F [a/⊤]) and let ω′ = ω[a 7→ 1]. Then, we have ω′ |=Σ F ,
as ω′(a) = 1. Consequently, we have:

ω ∈ {ω | ω[a 7→ 1] |=Σ F}

⊇ Direction:
{ω | ω[a 7→ 1] |=Σ F} ⊆ Ω

holds trivially.

Base case: F = b, for b ∈ Σ and b ̸= a. Then, we have F [a/⊤] = b, and consequently,
F [a/⊤] = F . We show that: ModΣ(F [a/⊤]) = {ω | ω[a 7→ 1] |=Σ F} holds. Observe
that

ModΣ(F) = {ω | ω(b) = 1}

27

holds. Consequently, we have that,

ModΣ(F [a/⊤]) = {ω | ω(b) = 1}.

We have the following chain of equivalences:

ModΣ(F) = ModΣ(F [a/⊤])

= {ω | ω(b) = 1}
= {ω | ω(b) = 1, ω(a) = 1} ∪ {ω|ω(b) = 1, ω(a) = 0}
= {ω | ω |=Σ F, ω(a) = 1}︸ ︷︷ ︸

X1

∪{ω | ω |=Σ F, ω(a) = 0}︸ ︷︷ ︸
X2

Now observe that for each ω′ ∈ X2 exists ω ∈ X1 such that ω = ω′[a 7→ 1].
Consequently we have:

X1 ∪X2 = {ω | (ω |=Σ F andω(a) = 1) or ω[a 7→ 1] |=Σ F}
= {ω | ω[a 7→ 1] |=Σ F}.

Induction case: F = ¬G.
From the structural induction we obtain,

ModΣ(G[a/⊤]) = {ω | ω[a 7→ 1] |=Σ G}.

Now, observe that:

ModΣ(F [a/⊤]) = Mod(¬G[a/⊤])

= Ω \ModΣ(G[a/⊤])

Hence, we have:

ModΣ(F [a/⊤]) = Ω \ModΣ(G[a/⊤])

= Ω \ {ω | ω[a 7→ 1] |=Σ G}
= {ω | ω[a 7→ 1] ̸|=Σ G}
= {ω | ω[a 7→ 1] |=Σ ¬G}
= {ω | ω[a 7→ 1] |=Σ F}

Induction case: F = G ∧H . The following chain of quivalences holds:

ModΣ(F [a/⊤]) = ModΣ((G ∧H)[a/⊤])

= ModΣ(G[a/⊤] ∧H[a/⊤])

= ModΣ(G[a/⊤]) ∩ModΣ(H[a/⊤])

From the induction, we obtain:

28

ModΣ(G[a/⊤]) = {ω | ω[a 7→ 1] |=Σ G}
ModΣ(H[a/⊤]) = {ω | ω[a 7→ 1] |=Σ H}

So, we obtain the following equivalence:

ModΣ(F [a/⊤]) = {ω | ω[a 7→ 1] |=Σ G} ∩ {ω | ω[a 7→ 1] |=Σ H}. (*)

Using set theory, we obtain from (*):

ModΣ(F [a/⊤]) = {ω | ω[a 7→ 1] |=Σ G} ∩ {ω | ω[a 7→ 1] |=Σ H}
= {ω | ω[a 7→ 1] |=Σ G,ω[a 7→ 1] |=Σ H}
= {ω | ω[a 7→ 1] |=Σ (G ∧H)}

Induction case: F = G ∨H . The following chain of quivalences holds:

ModΣ(F [a/⊤]) = ModΣ((G ∨H)[a/⊤])

= ModΣ(G[a/⊤] ∨H[a/⊤])

= ModΣ(G[a/⊤]) ∪ModΣ(H[a/⊤])

From the induction, we obtain:

ModΣ(G[a/⊤]) = {ω | ω[a 7→ 1] |=Σ G}
ModΣ(H[a/⊤]) = {ω | ω[a 7→ 1] |=Σ H}

So, we obtain the following equivalence:

ModΣ(F [a/⊤]) = {ω | ω[a 7→ 1] |=Σ G} ∪ {ω | ω[a 7→ 1] |=Σ H}. (**)

Using set theory, we obtain from (**):

ModΣ(F [a/⊤]) = {ω|ω[a 7→ 1] |=Σ G} ∪ {ω | ω[a 7→ 1] |=Σ H}
= {ω | ω[a 7→ 1] |=Σ G or ω[a 7→ 1] |=Σ H}
= {ω | ω[a 7→ 1] |=Σ (G ∨H)}

Proposition 22 (Semantic characterization of ⊥ Substituion). Let ω ∈ ΩΣ, F ∈ LΣ be
a formula and a a variable over Σ.

ModΣ(F [a/⊥]) = {ω | ω[a 7→ 0] |=Σ F}.

Proof. By structural induction of F ∈ LΣ, we can show

ModΣ(F [a/⊥]) = {ω|ω[a 7→ 0] |=Σ F}

holds.

29

Base case: F = a. Then, we have F [a/⊥] ≡Σ ⊥. Consequently we optain:

ModΣ(F [a/⊥]) = ModΣ(⊥) = ∅.

We show that ModΣ(F [a/⊥]) = {ω | ω[a 7→ 0] |=Σ F} holds:

⊆ Direction:
∅ ⊆ {ω|ω[a 7→ 0] |=Σ F}

holds trivially.

⊇ Direction: Let ω′ = ω[a 7→ 0]. Then, we have ω′ ̸|=Σ F , as ω′(a) = 0. Consequently,
we have:

{ω|ω[a 7→ 0] |=Σ F} ⊆ ∅.

Base case: F = b , for b ∈ Σ and b ̸= a. Then, we have F [a/⊥] = b, and consequently,
F [a/⊥] = F . We show that

ModΣ(F [a/⊥]) = {ω | ω[a 7→ 0] |=Σ F}

holds. Observe that ModΣ(F) = {ω|ω(b) = 1} holds. Consequently, we have that,

ModΣ(F [a/⊥]) = {ω|ω(b) = 0}.

We have the following chain of equivalences:

ModΣ(F) = ModΣ(F [a/⊥])

= {ω | ω(b) = 1}
= {ω | ω(b) = 1, ω(a) = 1} ∪ {ω|ω(b) = 1, ω(a) = 0}
= {ω | ω |=Σ F, ω(a) = 1}︸ ︷︷ ︸

X1

∪{ω | ω |=Σ F, ω(a) = 0}︸ ︷︷ ︸
X2

Now observe that for each ω′ ∈ X1 exists ω ∈ X2 such that ω = ω′[a 7→ 0]. Conse-
quently we have:

X1 ∪X2 = {ω|(w |=Σ F andω(a) = 0) or ω[a 7→ 0] |=Σ F}
= {ω | ω[a 7→ 0] |=Σ F}

Induction case: F = ¬G. From the structural induction we obtain,

Mod(G[a/⊥]) = {ω | ω[a 7→ 0] |=Σ G}.

30

Now, observe that:

ModΣ(F [a/⊥]) = ModΣ(¬G[a/⊥])

= Ω \ModΣ(G[a/⊥])

Hence, we have:

ModΣ(F [a/⊥]) = Ω \ModΣ(G[a/⊥])

= Ω \ {ω|ω[a 7→ 0] |=Σ G}
= {ω | ω[a 7→ 0] ̸|=Σ G}
= {ω | ω[a 7→ 0] |=Σ ¬G}
= {ω | ω[a 7→ 0] |=Σ F}

Induction case: F = G ∧H . The following chain of quivalences holds:

ModΣ(F [a/⊥]) = ModΣ((G ∧H)[a/⊥])

= ModΣ(G[a/⊥] ∧H[a/⊥])

= ModΣ(G[a/⊥]) ∩ModΣ(H[a/⊥])

From the induction, we obtain:

ModΣ(G[a/⊥]) = {ω | ω[a 7→ 0] |=Σ G}
ModΣ(H[a/⊥]) = {ω | ω[a 7→ 0] |=Σ H}

So, we obtain the following equivalence:

ModΣ(F [a/⊥]) = {ω|ω[a 7→ 0] |=Σ G} ∩ {ω | ω[a 7→ 0] |=Σ H}. (*)

Using set theory, we obtain from (*):

ModΣ(F [a/⊥]) = {ω|ω[a 7→ 0] |=Σ G} ∩ {ω|ω[a 7→ 0] |=Σ H}
= {ω | ω[a 7→ 0] |=Σ G,ω[a 7→ 0] |=Σ H}
= {ω | ω[a 7→ 0] |=Σ (G ∧H)}

Induction case: F = G ∨H . The following chain of quivalences holds:

ModΣ(F [a/⊥]) = ModΣ((G ∨H)[a/⊥])

= ModΣ(G[a/⊥] ∨H[a/⊥])

= ModΣ(G[a/⊥]) ∪ModΣ(H[a/⊥])

From the induction, we obtain:

ModΣ(G[a/⊥]) = {ω | ω[a 7→ 0] |=Σ G}
ModΣ(H[a/⊥]) = {ω | ω[a 7→ 0] |=Σ H}

31

So, we obtain the following equivalence:

ModΣ(F [a/⊥]) = {ω|ω[a 7→ 0] |=Σ G} ∪ {ω | ω[a 7→ 0] |=Σ H}. (**)

Using set theory, we obtain from (**):

ModΣ(F [a/⊥]) = {ω|ω[a 7→ 0] |=Σ G} ∪ {ω | ω[a 7→ 0] |=Σ H}
= {ω | ω[a 7→ 0] |=Σ G or ω[a 7→ 0] |= H}
= {ω | ω[a 7→ 0] |=Σ (G ∨H)}

4.2 Forget Relation and Relevance

Lin and Reiter describe this forget relation in their seminal paper [LR94] for first-
order logic. However, this concept also holds relevance in propositional logic, as
discussed further in related research [EKI19]. Formally, we can define this forget
relation as follows:

Definition 23 (Forget Relation). Given two interpretations ω1, ω2 ⊆ ΩΣ, we say ω1 ∼a

ω2 if ω1 and ω2 agree on all variables except possibly on the truth value of a.

Let x1, x2, y1, y2 ∈ ΩΣ be interpretations and let F ∈ LΣ and a ∈ Σ.

ω1 ∼a ω2 a b F Forget(F, a) ≡Σ ⊤ SkepForget(F, a) ≡Σ b

x2 0 0 0 1 0
x1 1 0 1 1 0
y2 0 1 1 1 1
y1 1 1 1 1 1

Figure 13: Forget Relation Table

We have organized the truth table as depicted in Figure 13 based on pairs of a
forget relation ω1 ∼a ω2 over a. For each interpretation ω1, there exists another
interpretation ω2 such that ω2 agrees with ω1 on all variables except for a. For exam-
ple, consider the interpretations x1 and x2. This illustrates the duplication effect we
discussed earlier induced by the substitutions.

There exists a relationship between the model set of F and the model set of
Forget(F, a) or SkepForget(F, a), which is determined by pairs of interpretations
in the forget relation. Let’s explore this further: For each interpretation ω1 ∈ ΩΣ,
there exists an interpretation ω2 such that ω1 ∼a ω2. We make four case distinctions:

(1) ω1 |=Σ F and ω2 |=Σ F

(2) ω1 ̸|=Σ F and ω2 |=Σ F

(3) ω1 |=Σ F and ω2 ̸|=Σ F

(4) ω1 ̸|=Σ F and ω2 ̸|=Σ F

Figure 14: Cases of Forget Relation and Models of F

32

Let’s discuss the cases for ω1 ∼a ω2 as stated in Figure 14:

• In Case (1), both ω1 and ω2 satisfy F , the assignment of a does not affect the
satisfaction of F because both interpretations necessarily yield opposite as-
signments for a. Thus, we can infer that a is irrelevant for satisfying F .

• In Cases (2) and (3), where either ω1 or ω2 satisfies F while the other does not.
The assignment of a is a necessary condition for satisfaction, both interpreta-
tions agree on all assignments except for a. Here, we can conclude that a is
relevant for satisfying F .

• In Case (4), where neither ω1 nor ω2 satisfies F , it is trivially observed that a is
irrelevant for satisfying F .

Now, let us examine the outcome of forgetting, focussing on the Γ-parts of ω1 and
ω2, denoted as ωΓ

1 and ωΓ
2 . We obtain the same (collapsed) interpretation ωf ∈ Γ

where ωf = ωΓ
1 = ωΓ

2 . This implies that, for a forget formula (e.g., Forget(F, a)),
there must exist a truth value that is identical for both ω1 and ω2, even if the truth val-
ues for F possibly differ between them. In retrospect, we can state that the "essence"
of forgetting lies in the requirement that pairs within the forgetting relation yield
the equal truth value for the respective forget formulae.

We have now established the interrelation between the forget relation ω1 ∼a ω2,
the variable a, and the models of F . We observed that forgetting necessitates as-
signing equal truth values to the forget formulae under ω1 and ω2. This raises the
question of how the substitutions F [a/⊥] and F [a/⊤] relate to these insights, given
their crucial role in determining the outcome. A key inquiry here is under what con-
ditions both substitutions are true (or false), considering that they "insert" opposite
values for a. We will delve into these questions in the next subsection.

33

4.3 Inclusion or Exclusion

This subsection aims to show the step-by-step transition from the truth values of F
to those of the substitutions F [a/⊥] and F [a/⊤], and then, in the final step, to the
values of the forget formulae. Afterward, we can characterize the key distinctions
between Forget and SkepForget. Let’s revisit the three examples: F1 = ¬a, F2 =
a ∧ b, and F3 = a ∨ b, and analyze their respective truth tables.

a b F1 F1[a/⊤] F1[a/⊥] Forget(F1, a) SkepForget(F1, a)

0 0 1 0 1 1 0
0 1 1 0 1 1 0
1 0 0 0 1 1 0
1 1 0 0 1 1 0

a b F2 F2[a/⊤] F2[a/⊥] Forget(F2, a) SkepForget(F2, a)

0 0 0 0 0 0 0
0 1 0 1 0 1 0
1 0 0 0 0 0 0
1 1 1 1 0 1 0

a b F3 F3[a/⊤] F3[a/⊥] Forget(F3, a) SkepForget(F3, a)

0 0 0 1 0 1 0
0 1 1 1 1 1 1
1 0 1 1 0 1 0
1 1 1 1 1 1 1

Figure 15: Compare Substitutions with Forget Operations

ω1 ω1

ω2 ω2

ω1

ω2

ω1 ω1

ω2 ω2

ω1

ω2

In Figure 15, we observe a pattern, highlighted in blue and red, illustrating the
relationship between F and the substitutions under the forget relation as follows:
Let F be a formula, a ∈ Σ and ω1, ω2 ∈ ΩΣ such that ω1 ∼a ω2. Then:

ω1(F) = ω2(F) if and only if ω1(F [a/⊤]) = ω1(F [a/⊥]) and (A)
ω2(F [a/⊤]) = ω2(F [a/⊥])

ω1(F) ̸= ω2(F) if and only if ω1(F [a/⊤]) ̸= ω1(F [a/⊥]) and (B)
ω2(F [a/⊤]) ̸= ω2(F [a/⊥])

Given a forget relation ω1 ∼a ω2, the statement referenced under (A) describes that
the substitutions F [a/⊥] and F [a/⊤] yield equal truth values under the same inter-
pretation (respectively ω1 and ω2), if and only if the truth values of F under ω1 and
ω2 are also equal. This scenario is depicted in blue in Figure 15. Conversely, the

34

statement referenced under (B), highlighted in red, describes that the substitutions
yield opposing truth values under the same respective interpretations, if and only if
the truth values of F under ω1 and ω2 are also opposing.

Note that the left-hand side of the statements referenced under (A) and (B) per-
tains to the equality of truth values of the same formula under different interpreta-
tions ω1 and ω2, while on the right-hand side, we want to highlighting the relation
of the equality of truth values of different formulae under the same interpretation.

Additionally, we observe that,

If ω1 ∼a ω2, then ω1(F [a/⊤]) = ω2(F [a/⊤]) and
ω1(F [a/⊥]) = ω2(F [a/⊥])

wich describes the duplication effect we discussed in Subsection 3.3. To draw a
connection to the case distinctions we discussed in Figure 14, consider the following.
For each ω ∈ ΩΣ , a ∈ Σ and a formula F over LΣ:

If ω(F [a/⊥]) = ω(F [a/⊤]) then a is irrelevant to satisfy F.

If ω(F [a/⊥]) ̸= ω(F [a/⊤]) then a is relevant to satisfy F.

Recall, in previous section we learned that forgetting involves assigning the same
truth value to the forget formulae under ω1 and ω2 where ω1 ∼a ω2, such that they
collapse into ωf ∈ ΩΓ where ωf = ωΓ

1 = ωΓ
2 . How to determine this value? If

ω1(F) = ω2(F) then then a is irrelevant to satisfy F and the decision is straightfor-
ward since both interpretations already assign the same truth value to F ; we can
simply adopt the same value.

The dilemma arises when one interpretation is a model of F while the other is
not. This is the situation ω1(F) ̸= ω2(F) and wich we observed previously in Figure
14 as Cases 2 and 3. This is also the situation of ambiguity we discussed earlier in
Subsection 3.2. Here, we face the necessity of deciding a unified truth value for the
forget formula under both interpretations ω1 and ω2 while the sentence of origin F
yields opposing values. This is essentially the point of "forgetting", the point where
we lose information. One could argue that it necessitates the introduction of "false"
information. However, this decision results in either a surplus or a deficit of models
in the outcome, thereby explaining the occurrence of tautologies or contradictions,
respectively.

Similar to the equations referenced under (A) and (B) we can relate truth values of
F to the respective forget formulae as well. Again, let F ∈ LΣ, a ∈ Σ and ω1, ω2 ∈ ΩΣ

such that ω1 ∼a ω2. Then:

ω1(F) = ω2(F) if and only if ω1(Forget(F, a)) = ω1(SkepForget(F, a)) and (C)
ω2(Forget(F, a)) = ω2(SkepForget(F, a)).

ω1(F) ̸= ω2(F) if and only if ω1(Forget(F, a)) ̸= ω1(SkepForget(F, a)) and (D)
ω2(Forget(F, a)) ̸= ω2(SkepForget(F, a)).

35

The equations given under (C) and (D) demonstrate what we just described. Un-
der (C) we have the straighforward assigment and under (D) we have the situation
of ambiguity that each operation resolves differently.

Now, lets us observe how each forget operation resolves the aforementioned am-
biguity differently. The elimination of a through substitutions has possibly already
introduced the drastic results. At this point, the decision only differs in how these
results are further resolved. In Figure 15, we see that for Forget formulae, the deci-
sion is determined by the maximum value, Max({ω(F [a/⊥]), ω(F [a/⊤])}). In con-
trast, for SkepForget formulae, we obtain Min({ω(F [a/⊥]), ω(F [a/⊤])}), hence the
thesis title. This aspect is not surprising given their definitions.

In other words, if ω1 and ω2 are models of F then both are included in the set
ModΣ(SkepForget(F, a)). Also then both are models for F [a/⊥] and F [a/⊤]. How-
ever, if only one of ω1 or ω2 is a model, neither belongs to ModΣ(SkepForget(F, a));
instead, both interpretations are elements of ModΣ(Forget(F, a)). The key distinc-
tion is that Forget includes interpretations of the forget relation where a is relevant
to satisfy F , while SkepForget excludes them. In summary, we can formally capture
both behaviors as follows:

For each ω1 ∈ ModΣ(F) there is an ω2 with ω1 ∼a ω2 such that:

• ω1 ∈ ModΣ(F) ∨ ω2 /∈ ModΣ(F) implies ω1, ω2 ∈ ModΣ(Forget(F, a))

• ω1, w2 ∈ ModΣ(F) implies ω1, ω2 ∈ ModΣ(SkepForget(F, a)).

Additionally, we can obtain a set-theoretic characterization for the models of both
operations, which we will use in the following sections as well:

Proposition 24. Let F ∈ LΣ and let a ∈ Σ.

ModΣ(Forget(F, a)) = ModΣ(F [a/⊤]) ∪ModΣ(F [a/⊥])

ModΣ(SkepForget(F, a)) = ModΣ(F [a/⊤]) ∩ModΣ(F [a/⊥])

Proof. By the definition of Mod we obtain:

ModΣ(Forget(F, a)) = ModΣ(F [a/⊤] ∨ F [a/⊥])

= ModΣ(F [a/⊤]) ∪ModΣ(F [a/⊥])

ModΣ(SkepForget(F, a)) = ModΣ(F [a/⊤] ∧ F [a/⊥])

= ModΣ(F [a/⊤]) ∩ModΣ(F [a/⊥])

4.4 Minimizer or Maximizer

As noted earlier in Subsection 3.1, after applying both forget operations, the signa-
ture Σ is reduced to a subsignature Γ, shrinking to the extreme case of ∅. However,
we can observe different behaviors for the model sets of F .

36

• ModΣ(F) ⊆ ModΣ(Forget(F, a))

• ModΣ(F) ⊇ ModΣ(SkepForget(F, a))

We observe contrasting effects between Forget and SkepForget: Forget tends
to expand the set of models, while SkepForget tends to contract it. As noted in
[LR94], F |=Σ Forget(F, a). Conversely, SkepForget(F, a) |=Σ F . This preference
for disjunctive variable forgetting likely stems from its ability to extract "weaker"
knowledge from a presumed "richer" base. Additionally, in extreme cases, Forget
can lead to a tautology, while SkepForget may result in a contradiction. The impli-
cations of the "principle of explosion", where any arbitrary formula can be derived
from a contradiction, are relevant considerations in the application of this technique.

Proposition 25. For a formula F ∈ LΣ and a variable a ∈ Σ. The following holds:

SkepForget(F, a) |=Σ F.

Proof. Let ω ∈ ΩΣ, F ∈ LΣ be a formula and let a ∈ Σ be a variable. We want to
proof that the following holds:

SkepForget(F, a) |=Σ F.

By definition of SkepForget we have:

F [a/⊤] ∧ F [a/⊥] |=Σ F.

Now we can obtain the model set relations such that:

ModΣ(F [a/⊤] ∧ F [a/⊥]) ⊆ ModΣ(F).

By definition of Mod we get:

ModΣ(F [a/⊤]) ∩ModΣ(F [a/⊥]) ⊆ ModΣ(F). (*)

Consider Proposition 21 and 22:

ModΣ(F [a/⊤]) = {ω | ω[a 7→ 1] |=Σ F} and ModΣ(F [a/⊥]) = {ω | ω[a 7→ 0] |=Σ F}.

We can now substitute the respective model sets in (*) with Proposition 21 and 22 to
obtain:

{ω | ω[a 7→ 1] |=Σ F} ∩ {ω | ω[a 7→ 0] |=Σ F} ⊆ {ω | ω |=Σ F}

Using set theory we can express our equation like so:

{ω | ω[a 7→ 1] |=Σ F, ω[a 7→ 0] |=Σ F}︸ ︷︷ ︸
Set1

⊆ {ω | ω |=Σ F}︸ ︷︷ ︸
Set2

Now, we have to show that ω ∈ Set1 implies ω ∈ Set2 or, equivalently, the contra-
positive

ω ̸∈ Set2 implies ω ̸∈ Set1.

For each ω ̸∈ Set2, we have ω ̸|=Σ F . Now considering Set1, if ω does not satisfy
F , then ω[a 7→ 1] or ω[a 7→ 0] might still satisfy F in the following two cases:

37

(1) ω ̸|=Σ F and ω1 = ω[a 7→ 1], ω1 |=Σ F where ω1(a) = 1

(2) ω ̸|=Σ F and ω0 = ω[a 7→ 0], ω0 |=Σ F where ω0(a) = 0

Observe that while ω does not satisfy F , the mappings ω0 and ω1 do. The only
alteration is the a-assignment. Thus, we conclude that the criterion for satisfying
F is determined solely by the assignment of a. For an element ω to be in Set1,
it must be that both ω[a 7→ 0] and ω[a 7→ 1] satisfy F simultaneously. However,
given the opposing assignments of a, it is impossible for both ω[a 7→ 0] |=Σ F and
ω[a 7→ 1] |=Σ F to be true concurrently. Consequently, ω cannot belong to Set1, thus
the implication holds.

Proposition 26. For a formula F ∈ LΣ and a variable a ∈ Σ. The following holds:

F |=Σ Forget(F, a).

Proof. Let ω ∈ ΩΣ, F ∈ LΣ be a formula and let a ∈ Σ be a variable. We want to
proof that the following holds:

F |=Σ Forget(F, a).

By definition of Forget we have:

F |=Σ F [a/⊤] ∨ F [a/⊥].

Now we can obtain the model set relations such that:

ModΣ(F) ⊆ ModΣ(F [a/⊤] ∨ F [a/⊥]).

By definition of Mod we get:

ModΣ(F) ⊆ ModΣ(F [a/⊤]) ∪ModΣ(F [a/⊥]). (*)

Consider Proposition 21 and 22:

ModΣ(F [a/⊤]) = {ω | ω[a 7→ 1] |=Σ F} and ModΣ(F [a/⊥]) = {ω | ω[a 7→ 0] |=Σ F}.

We can now substitute the respective model sets in (*) with Proposition 21 and 22 to
obtain:

{ω | ω |=Σ F} ⊆ {ω | ω[a 7→ 1] |=Σ F} ∩ {ω | ω[a 7→ 0] |=Σ F}

Using set theory we can express our equation like so:

{ω | ω |=Σ F}︸ ︷︷ ︸
Set1

⊆ {ω | ω[a 7→ 1] |=Σ F, ω[a 7→ 0] |=Σ F}︸ ︷︷ ︸
Set2

Now, we have to show that ω ∈ Set1 implies ω ∈ Set2.
For each ω ∈ Set1, we have ω |=Σ F . Now considering Set2, if ω does satisfy F ,

then ω[a 7→ 1] or ω[a 7→ 0] might still not satisfy F in the following two cases:

38

(1) ω |=Σ F and ω1 = ω[a 7→ 1], ω1 ̸|=Σ F where ω1(a) = 1

(2) ω |=Σ F and ω0 = ω[a 7→ 0], ω0 ̸|=Σ F where ω0(a) = 0

Observe that ω would satisfy F , but the mappings ω0 and ω1 do not. The only
change is the a-assignment. Therefore, we conclude that the criterion for not sat-
isfying F is determined solely by the assignment of a. For an element ω to be in
Set2, it must hold that either ω[a 7→ 0] or ω[a 7→ 1] satisfy F . Due to the opposing
assignments of a, there is always either ω[a 7→ 0] |=Σ F or ω[a 7→ 1] |=Σ F true.
Consequently, ω belongs to Set2, and thereby the implication holds.

ModΣ(SkepForget(F, a))

ModΣ(Forget(F, a))

ModΣ(F)

Figure 16

Figure 16 illustrates following Proposition 27, showcasing the relationship be-
tween models in the context discussed.

Proposition 27. Let F ∈ LΣ and let a ∈ Σ. The following relations hold true.

ModΣ(SkepForget(F, a)) ⊆ ModΣ(F) ⊆ ModΣ(Forget(F, a))

and thus
SkepForget(F, a) |=Σ F |=Σ Forget(F, a).

Proof. From proposition 26 we have F |=Σ Forget(F, a) and obtain:

Mod(F) ⊆ Mod(Forget(F, a))

From proposition 25 we have SkepForget(F, a) |=Σ F and obtain:

Mod(SkepForget(F, a)) ⊆ Mod(F)

Hence we have this relations:

ModΣ(SkepForget(F, a)) ⊆ ModΣ(F) ⊆ ModΣ(Forget(F, a))

We can conclude:

SkepForget(F, a) |=Σ F |=Σ Forget(F, a).

39

4.5 Switch Intuition

We will briefly examine the Switch operation, as defined in preliminaries, to de-
velop a deeper intuition and understanding of its connection to the forget relation.
Let us now consider this operation as if it were a mapping from all interpreta-
tions ω ∈ ΩΣ to their respective results. Let’s consider three formulae F1 = (¬a),
F2 = (a ∧ b) and F3 = (a ∨ b) in LΣ.

Switch(ω, a) and ω ∈ ΩΣ yields:
a b F1 F2 F3

0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

a b F1 F2 F3

1 0 0 0 1
1 1 0 1 1
0 0 1 0 0
0 1 1 0 1

Figure 17: switch mapping

Figure 17 illustrates mirroring-like behaviour across the "truth value" axis of the
variable a. Intuitivly, the term "Switch" suggests an operation where we simply in-
verse the truth value of a. Revisiting the forget relation discussed earlier, it involves
a single variable that differs between two interpretations while all other variables re-
main consistent. This aligns precisely with what the Switch operation accomplishes,
where we can describe the forget relation as

ω1 ∼a ω2 = ω1 ∼a Switch(ω1, a).

We denote the set of interpretations satisfying F under Switch(F, a) as

SwMod(F, a) = {ω | Switch(ω, a) |= F}

and which we will refer to as "switched models".

4.6 Model Set Dynamics

We aim to explore the interconnections among the model-sets of substitutions, for-
mulae, and switched models. As previously established, ModΣ(SkepForget(F, a))
can be described as {ω | ω[a 7→ 1] |=Σ F, ω[a 7→ 0] |=Σ F}. These mappings
notably lead to contradictory assignments for a. Moreover, the Switch operation
similarly results in contradictory a-assignments, highlighting a correlation between
these sets. By drawing this connection, we can characterize SkepForget as follows:

ModΣ(SkepForget(F, a)) = {ω | ω |=Σ F and Switch(ω, a) |=Σ F}.

Let’s begin by visually examining the relationships among these sets using set
diagrams. We will consider three formulae again: a, (a ∧ b), and (a ∨ b), along with

40

their negations over a language LΣ. Each diagram will indicate the corresponding
formula (and forget-formula) below in the left corner.

a

Mod(F)

ā

SwMod(F, a)

Mod(F [a/⊥]) = ∅

Mod(F [a/⊤]) = Ω

F = a

SkepForget(F, a) ≡ ⊥

ā

Mod(F)

a

SwMod(F, a)

Mod(F [a/⊤]) = ∅

Mod(F [a/⊥]) = Ω

F = ¬a
SkepForget(F, a) ≡ ⊥

Figure 18: Diagrams of F = a and F = ¬a

ab

Mod(F)

āb

SwMod(F, a)

Mod(F [a/⊥]) = ∅

Mod(F [a/⊤])

F = a ∧ b

SkepForget(F, a) ≡ ⊥

āb

Mod(F)

ab

SwMod(F, a)

Mod(F [a/⊤])

āb̄, ab̄

Mod(F [a/⊥]) = Ω

F = ¬(a ∧ b)

SkepForget(F, a) ≡ ¬b

Figure 19: Diagrams of F = a ∧ b and F = ¬(a ∧ b)

41

ab̄

Mod(F)

āb̄

SwMod(F, a)

Mod(F [a/⊥])

ab, āb

Mod(F [a/⊤]) = Ω

F = a ∨ b

SkepForget(F, a) ≡ b

āb̄

Mod(F)

ab̄

SwMod(F, a)

Mod(F [a/⊤]) = ∅

Mod(F [a/⊥])

F = ¬(a ∨ b)

SkepForget(F, a) ≡ ⊥

Figure 20: Diagrams of F = a ∨ b and F = ¬(a ∨ b)

In extreme cases, consider for instance F = (¬a ∨ (a ∨ b)), where all mentioned
sets become Ω. Conversely, for F = (¬a ∧ (a ∧ b)), we have ModΣ(F [a/⊥]) =
ModΣ(F [a/⊤]) = ModΣ(F) = SwModΣ(F, a) = ∅.

In the Diagrams 18, 19, and 20, we visually observe a behaviour that we antic-
ipated earlier regarding the exclusion of models where a is relevant to satisfy F .
For an intersection set Smod between ModΣ(F) and SwModΣ(F, a), precisely those
models are included from which F can be derived, where the assignment of a is
irrelevant to satisfy F . The set Smod is either the empty set, or we find pairs of
interpretations that satisfy the forget relation ω1 ∼a ω2. The same holds for an in-
tersection set Ssub = ModΣ(F [a/⊤]) ∩ ModΣ(F [a/⊥]). Ssub is the empty set unless
there are interpretations ω ∈ Ssub that derive F regardless of the assignment of a.
The examples of the diagrams are divided such that on the left side, a is only posi-
tively included in the formulae, while on the right side, a is only negatively (i.e., ¬a)
included in F . The following four cases, illustrate the diagrams formally:

(1) For a ∈ PosAtom(F) ∧ a ̸∈ NegAtom(F) we have:
a) ModΣ(F [a/⊥]) = ModΣ(F) ∩ SwModΣ(F, a)

b) ModΣ(F [a/⊤]) = ModΣ(F) ∪ SwModΣ(F, a)

(2) For a ̸∈ PosAtom(F) ∧ a ∈ NegAtom(F) we have:
a) ModΣ(F [a/⊥]) = ModΣ(F) ∪ SwModΣ(F, a)

b) ModΣ(F [a/⊤]) = ModΣ(F) ∩ SwModΣ(F, a)

(3) For a ∈ PosAtom(F) ∧ a ∈ NegAtom(F) and

(4) For a ̸∈ PosAtom(F) ∧ a ̸∈ NegAtom(F) we have:

a) ModΣ(F [a/⊤]) = ModΣ(F [a/⊥]) = ModΣ(F) = SwModΣ(F, a)

42

For cases (3) and (4), all sets are identical, consistent with our observations in
the extreme cases. In cases (1) and (2), we observe their duality in terms of set
operations. With this improved understanding of these relationships, we can now
characterize our skeptical notion of variable forgetting as follows:

Proposition 28. Let F ∈ LΣ and let a ∈ Σ, we have:

ModΣ(SkepForget(F, a)) = {ω | ω |=Σ F andSwitch(ω, a) |=Σ F}
= ModΣ(F) ∩ {ω | Switch(ω, a) |=Σ F}
= ModΣ(F) ∩ SwModΣ(F, a)

Proof. We need to show that

ModΣ(SkepForget(F, a)) = ModΣ(F) ∩ SwModΣ(F, a)

holds.
The following equivalence is due to Proposition 21 and 22:

ModΣ(F [a/⊤])∩ModΣ(F [a/⊥]) = {ω | ω[a 7→ 0] |=Σ F}∩{ω | ω[a 7→ 1] |=Σ F} (*)

By Proposition 24, we have the following set equation :

ModΣ(SkepForget(F, a)) = ModΣ(F [a/⊤] ∧ F [a/⊥])

= ModΣ(F [a/⊤]) ∩ModΣ(F [a/⊥])

With (*) we can substitue our equation such that:

ModΣ(SkepForget(F, a)) = ModΣ(F [a/⊤]) ∩ModΣ(F [a/⊥])

= {ω | ω[a 7→ 0] |=Σ F} ∩ {ω|ω[a 7→ 1] |=Σ F}

Applying set-theoretic transformations, we can express this as:

ModΣ(SkepForget(F, a)) = {ω | ω[a 7→ 0] |=Σ F, ω[a 7→ 1] |=Σ F}

Observe that for each interpretation ω, the operation Switch(ω, a) results in an in-
terpretation with opposite assignments for a:

(1) ω = ω[a 7→ 1], then Switch(ω, a) = ω[a 7→ 0]

(2) ω = ω[a 7→ 0], then Switch(ω, a) = ω[a 7→ 1].

43

Hence, we have the equivalence:

{ω | ω[a 7→ 0] |=Σ F, ω[a 7→ 1] |=Σ F} = {ω | ω |=Σ F, Switch(ω, a) |=Σ F} (**)

Using (**) with the previous equation, we obtain the following substitution:

ModΣ(SkepForget(F, a)) = {ω | ω[a 7→ 0] |=Σ F, ω[a 7→ 1] |=Σ F}
= {ω | ω |=Σ F, Switch(ω, a) |=Σ F}

From here we can easily show that the proposition holds true by the following
transformation:

ModΣ(SkepForget(F, a)) = {ω | ω |=Σ F, Switch(ω, a) |=Σ F}
= {ω | ω |=Σ F} ∩ {Switch(ω, a) |=Σ F}
= ModΣ(F) ∩ SwModΣ(F, a)

In [LLM03] the authors state the following characterization of Forget.

Proposition 29 ([LLM03]). Let F ∈ LΣ and let a ∈ Σ, we have:

ModΣ(Forget(F, a)) = {ω | ω |=Σ F or Switch(ω, a) |=Σ F}
= ModΣ(F) ∪ {ω | Switch(ω, a) |=Σ F}
= ModΣ(F) ∪ SwModΣ(F, a)

44

5 Related Topics

In the context of variable forgetting, there are several related topics that have been
the subject of research. We will briefly introduce two of these topics. First, there
is the concept of marginalization, which emphasizes semantic aspects, signature
reduction and builds upon variable forgetting. Second, we have the concept of in-
dependence, which examines the dependency of a propositional variable on a given
formula.

5.1 Marginalisation

In [SBKI24], the authors have demonstrated that variable forgetting can be under-
stood as "marginalization", from a semantic perspective. This aligns with the reduc-
tion discussed earlier, where a signature is simplified to a subset of its own, thereby
excluding certain variables from consideration.

Definition 30 (Model Marginalization, ModMgΣ(ω,Γ), ModMgΣ(M,Γ)). Let ω ∈
ΩΣ, M ⊆ ΩΣ, and let Γ ⊆ Σ. We define ModMgΣ(ω,Γ) = ωΓ as the (model) marginal-
ization of ω from Σ to Γ. The element-wise marginalization of all ω ∈ M from Σ to Γ
is called the (model) marginalization of M from Σ to Γ, denoted by ModMgΣ(M,Γ) =
{ModMgΣ(ω,Γ) | ω ∈ M}.

Definition 31 (Syntactic Marginalization). Let F ∈ LΣ and let Γ ⊆ Σ. The syntactic
marginalization of F (from Σ) to Γ, written SynMgΣ(F,Γ), is Forget(F,Σ \ Γ)

Theorem 32 ([SBKI24]). For all F ∈ LΣ and Γ ⊆ Σ, the following holds:

ModMgΣ(ModΣ(F),Γ) = ModΓ(SynMgΣ(F,Γ))
= ModΓ(Forget(F,Σ \ Γ))

To explore our topic of skeptical forgetting in the context of marginalization, we
introduce the following definition:

Definition 33 (Skeptical Syntactic Marginalization). Let F ∈ LΣ and let Γ ⊆ Σ. The
skeptical syntactic marginalization of F (from Σ) to Γ, written SkepSynMgΣ(F,Γ), is
SkepForget(F,Σ \ Γ).

The authors in [SBKI24] demonstrate that the models of classical variable forget-
ting for a formula F ∈ LΣ and a variable a ∈ Σ are equivalent to the set of inter-
pretations obtained through model marginalization from Σ to Γ where Γ = Σ \ {a},
formally expressed as:

ModMgΣ(ModΣ(F),Σ \ {a}) = ModΓ(Forget(F, a)).

Example 34. Consider the formula F = a ∨ (b ∧ c) over the signature Σ = {a, b, c}. Let
Γ = Σ \ {a} = {b, c} be a subsignature of Σ. First, we examine the models of F :

ModΣ(F) = {{ābc}, {ab̄c̄}, {ab̄c}, {abc̄}, {abc}}.

45

Now, consider the marginalization of the models of F :

ModMgΣ(ModΣ(F),Γ) = {{bc}, {b̄c̄}, {b̄c}, {bc̄}} = ΩΓ.

For SynMgΣ(F,Γ) = Forget(F, a), we obtain the tautology. Consequently, the models are
ModΣ(Forget(F, a)) = ModΣ(⊤) = ΩΣ and ModΓ(Forget(F, a)) = ModΓ(⊤) = ΩΓ.

Example 35. Next, we consider Skeptical Syntactic Marginalization. Again, let F = a ∨
(b ∧ c) over the signature Σ = {a, b, c}. For SkepSynMgΣ(F,Γ) = SkepForget(F, a), we
derive b ∧ c. Revisiting the models of F from the previous example:

ModΣ(F) = {{ābc}, {ab̄c̄}, {ab̄c}, {abc̄}, {abc}}.

We convert the set of ModΣ(F) into a multiset of sets such that:{{
{ābc}, {ab̄c̄}, {ab̄c}, {abc̄}, {abc}

}}
Notice that removing the variable a results in duplicate remainders such as {bc}:{{

{bc}, {b̄c̄}, {b̄c}, {bc̄}, {bc}
}}

.

The model set ModΓ(SkepForget(F, a)) = ModΓ(b ∧ c) = {bc} corresponds precisely to
the set of duplicate remainders.

Note that while models of F are elements of ΩΣ, the models of SkepForget(F, a)
are elements of ΩΓ. In that regard, we can consider them as marginalized. Seman-
tically, Skeptical Syntactic Marginalization results in a distinct set of models com-
pared to classical Syntactic Marginalization and can be viewed as an alternative
syntactic realization of model marginalization.

Proposition 36. Let F ∈ LΣ, a ∈ Σ and Γ ⊆ Σ with Γ = Σ \ {a}, then

ModΓ(SkepForget(F, a)) ⊆ ModMgΣ(ModΣ(F),Γ)

Proof. From Propositon 28 and 29 we have

ModΣ(SkepForget(F, a)) = {ω1 | ω1 |=Σ F} ∩ {ω1 | Switch(ω1, a) |=Σ F}, (1)
ModΣ(Forget(F, a)) = {ω1 | ω1 |=Σ F} ∪ {ω1 | Switch(ω1, a) |=Σ F} (2)

Proposition 27 states the following holds:

ModΣ(SkepForget(F, a)) ⊆ ModΣ(Forget(F, a)). (*)

We want to show that:

ModΓ(SkepForget(F, a)) ⊆ ModΓ(Forget(F, a)).

We subsitute (*) with (1) and (2) and obtain:

{ω1 | ω1 |=Σ F, ω2 = Switch(ω1, a) |=Σ F} ⊆ {ω1 | ω1 |=Σ F or ω2 = Switch(ω1, a) |=Σ F}

46

Now, we transition from Σ to Γ. Observe that on both sides of the equation, the
forget relation ω1 ∼a ω2, as defined in Definition 23, holds. Therefore, we have
ωΓ
1 = ωΓ

2 = ωf , where ωf ∈ ΩΓ.
To prove that for all ωf in ModΓ(SkepForget(F, a)) implies ωf is element of ModΓ(Forget(F, a))

holds, observe that:

• If ω1 |=Σ F and ω2 |=Σ F then ωf ∈ ModΓ(SkepForget(F, a))

• If ω1 |=Σ F or ω2 |=Σ F then ωf ∈ ModΓ(Forget(F, a))

Hence we conclude that every ωf ∈ ModΓ(SkepForget(F, a)) must also be an ele-
ment of ModΓ(Forget(F, a)). Therefore:

ModΓ(SkepForget(F, a)) ⊆ ModΓ(Forget(F, a)) (**)
⊆ ModΓ(Forget(F,Σ \ Γ))

We subsitute (**) with Theorem 32:

ModMgΣ(ModΣ(F),Γ) = ModΓ(Forget(F,Σ \ Γ)),

and obtain:

ModΓ(SkepForget(F, a)) ⊆ ModMgΣ(ModΣ(F),Γ).

5.2 Variable Inpependence

We have seen that pairs of interpretations satisfying the forget relation regarding
a variable a and our formula F are always models of SkepForget(F, a). For these
pairs, the variable a is essentially irrelevant or, one could say, independent. There is
relevant research on the topic of variable independence closely linked to the concept
of forgetting. Therefore, we would like to delve into this subject briefly.

In [LLM03], the authors define propositional variable independence both syntac-
tically and semantically as follows:

Definition 37 (Syntactical Inpependence). Let F ∈ LΣ and let a ∈ Σ.

• F is variable dependent on a if a ∈ Sig(F) holds.

• F is variable dependent on V ⊆ Σ, if there is a variable a ∈ V such that F is variable
dependent on a.

Definition 38 (Semantical Independence). Let F ∈ LΣ and let a ∈ Σ.

• F is variable independent from a denoted a ̸7→+
− F if there exists a formula ϕ such

that ϕ ≡ F and ϕ is syntactically var independent from a. Otherwise its dependent
a 7→+

− F . We denote DepV ar(F) the set of all variables a such that a 7→+
− F .

47

• F is variable independent from V ⊆ Σ, denoted V ̸7→+
− F , if V ∩DepV ar(F) = ∅

holds. Otherwise F is variable dependent on V , denoted V 7→+
− F .

Example 39. Consider a sentence F = (a ∧ b) ∧ (a ∨ c). Then we have a sentence ϕ =
(a ∧ b) that is equal to F . Therefore DepV ar(F) = {a, b} and c ̸7→+

− F , means F is
var-independent from c.

The authors of [LLM03] also highlight that:

a ̸7→+
− F if (∀ω ∈ Ω, ω |=Σ F ⇐⇒ Switch(ω, a) |=Σ F) holds .

This reminds us of our semantic characterization of

ModΣ(SkepForget(F, a)) = {ω | ω |=Σ F andSwitch(ω, a) |=Σ F}.

We also know that for

ModΣ(Forget(F, a)) = {ω | ω |=Σ F or Switch(ω, a) |=Σ F}.

However, it’s essential to distinguish between a biconditional and a conjunction (or
disjunction). It’s important to note that forgetting is an operation that constructs
sets, whereas variable independence is a property that can be either true or false for
a given set. Variable independence is a result of variable forgetting, as indicated the
statements

a ̸7→+
− Forget(F, a) and a ̸7→+

− SkepForget(F, a).

Lets try to forget an independent variable:

SkepForget(F, c) = F [c/⊤] ∧ F [c/⊥]

≡Σ (((a ∧ b) ∧ (a ∨ ⊤)) ∧ ((a ∧ b) ∧ (a ∨ ⊥)))

≡Σ (((a ∧ b) ∧ ⊤) ∧ ((a ∧ b) ∧ a))

≡Σ ((a ∧ b) ∧ ((a ∧ b) ∧ a))

≡Σ ((a ∧ b) ∧ ((a ∧ b)))

≡Σ (a ∧ b)

For Forget(F, c) = (a ∧ b), the result is equal as well as it is equal to ϕ. This ob-
servation suggests that if a ̸∈ DepV ar(F) then Forget(F, a) ≡Σ SkepForget(F, a) ?
Lets consider another example with a disjunction, G = (a ∨ b) ∧ (a ∨ b ∨ c) is equal
to γ = (a ∨ b). We have same DepV ar(G) = {a, b}. Then we get Forget(G, c) ≡Σ

SkepForget(G, c) ≡Σ (a ∨ b) ≡Σ γ. This strengthens our suspicion.

48

ModΣ(F) =

SwModΣ(F, a) =

ModΣ(F [a/⊤]) =

ModΣ(F [a/⊥]) =

{abc̄, abc}

F = (a ∧ b) ∧ (a ∨ c))

SkepForget(F, c) ≡Σ a ∧ b

Figure 21: Forgetting an independent Variable c.

Proposition 40. Let F ∈ LΣ and let a ∈ Σ, then

a ̸∈ DepV ar(F) if and only if Forget(F, a) ≡Σ SkepForget(F, a)

or
a ̸7→+

− F if and only if Forget(F, a) ≡Σ SkepForget(F, a).

Proof. If a ̸∈ DepV ar(F) or a ̸7→+
− F if and only if there exists a formula ϕ such

that ϕ ≡Σ F and ϕ is syntactically var independent from a and therefore a ̸∈ Sig(ϕ).
Then

Forget(ϕ, a) ≡Σ ϕ and SkepForget(ϕ, a) ≡Σ ϕ,

hence
Forget(ϕ, a) ≡Σ SkepForget(ϕ, a).

Only when we forget a dependent variable we possibly yield a drastic results as
demonstrated in the beginning.

49

6 Conclusion

We have shown that while SkepForget is compatible under conjunction, it is not
compatible under disjunction or negation. Furthermore, SkepForget is related to
Forget in a de Morgan relationship. On a syntactic level, we have identified equiv-
alences to simplify forget sentences under certain sentence forms, making it easier
to recognize whether and which drastic results (⊤, ⊥) are to be expected. Further-
more, we have formalized a method using clause sets to ascertain the conditions
under which SkepForget yields drastic outcomes.

On a semantic level, we have analyzed step by step the different ways both op-
erations resolve the discussed ambiguity and dissected why tautologies and contra-
dictions arise when forgetting is applied. When the decision of whether an inter-
pretation ω is a model of F depends on the "variable to be forgotten", SkepForget
always excludes both interpretations of a forget relation, whereas classical forget-
ting would include both. In other words, in a forget relation, both interpretations
of the pair must satisfy F for SkepForget to be satisfied. Consequently, we obtain
fewer models for SkepForget(F, a). Thus, it can indeed be said that skeptical for-
getting minimizes truth values. We have seen that SkepForget can be used as an
alternative syntactic realization of model marginalization. When the variable to be
forgotten is independent, SkepForget and Forget are equivalent. Under this con-
dition, we also do not obtain drastic results. In summary, it could be argued that
Forget reacts more affirmatively when there is uncertainty. Conversely, SkepForget
tends to make fewer claims and takes a more cautious stance.

The meaningfulness of this technique is certainly debatable. Let’s focus on what
doesn’t seem particularly sensible, namely the drastic results. If we imagine for-
getting as something known losing its contour, merging into "everything else", or
into "the void", then equating the variable with a constant, namely a tautology or
contradiction, makes some sense. However, if we consider the result of forgetting
as the complete disappearance of a mental entity, simply replacing a symbol might
not suffice. In our case, there still remains a reference to something—the logical con-
stant, an entity being "spoken about". We do forget, but we shift the reference and
point to something else, thereby introducing something new. This referenced entity,
in the form of a tautology or contradiction, introduces misinformation or contin-
ues to influence our forget statement; one could say it distorts the statement in an
unexpected way.

However, the concept of relevance is highly intriguing. Framing forgetting as a
form of relevance-loss leads us to consider its inverse: how relevance can be at-
tributed? This suggests a reverse function. One might envision this process ex-
panding a signature by introducing new variables from "outside" or differentiating
existing atoms, literaly splitting atoms. Such perspectives offer exciting avenues for
future research, in our view.

50

References

[Boo21] George Boole. An investigation of the laws of thought on which are
founded the mathematical theories of logic and probabilities (1854).
2021.

[EKI19] Thomas Eiter and Gabriele Kern-Isberner. A brief survey on forget-
ting from a knowledge representation and reasoning perspective. KI-
Künstliche Intelligenz, 33:9–33, 2019.

[LLM03] Jérôme Lang, Paolo Liberatore, and Pierre Marquis. Propositional
independence-formula-variable independence and forgetting. Journal
of Artificial Intelligence Research, 18:391–443, 2003.

[LR94] Fangzhen Lin and Ray Reiter. Forget it. In Working Notes of AAAI Fall
Symposium on Relevance, pages 154–159, 1994.

[SBKI24] Kai Sauerwald, Christoph Beierle, and Gabriele Kern-Isberner. Propo-
sitional Variable Forgetting and Marginalization: Semantically, Two Sides
of the Same Coin, pages 144–162. 03 2024.

[VDHLM09] Hans Van Ditmarsch, Andreas Herzig, Jérôme Lang, and Pierre Mar-
quis. Introspective forgetting. Synthese, 169:405–423, 2009.

51

