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Prefae\The e�ort of the eonomist is to see, to piture the interplay of eonomi el-ements. The more learly ut these elements appear in his vision, the better; themore elements he an grasp and hold in his mind at one, the better. The eonomiworld is a misty region. The �rst explorers used unaided vision. Mathematis is thelantern by whih what before was dimly visible now looms up in �rm, bold outlines.The old phantasmagoria disappear. We see better. We also see further."- Irving FisherDuring my studies at the FernUniversit�at in Hagen I learned to appreiate the beauty and ele-gane of various onepts in mathematis. However, as an eonomi graduate I have sometimesnot grasped the relation to reality. In this sense, I would like to express my sinere thanks tomy aademi advisor Prof. Dr.Winfried Hohst�attler. He gave me the possibility to work on amathematially interesting subjet, whih displays great appliability in eonomis.I would like to express my gratitude to Robert Nikel for supporting me during all stagesof the Bahelor thesis. The e-mail and telephone orrespondene with him proved to be veryinspiring, reassuring and valuable at the same time.Moreover, many thanks go to Dr. Thomas P��ner for proof-reading large parts of the Bah-elor thesis. I was luky to have him as a fellow student and friend during my studies at theFernUniversit�at in Hagen.Furthermore, I am deeply indebted to my parents Ernst and Renate as well as my brothersRaphael and Josua for their support during long years. I am proud of all of you. Finally, I owevery muh to Claudia and her family. She has been very understanding during all stages of theBahelor thesis and she has always motivated me and given me strength.St. Gallen, August 2007 David Shiess
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AbstratThe present Bahelor thesis deals with mixed mathing markets. In the famous mixed mathingmarket model of Eriksson and Karlander (2000) the harateristi of the two players involved ina ontrat determines the rigidity or exibility of the ontrat. We give a further generalisationby introduing a model where the harateristi of the edges between any two players deideswhether the ontrat is rigid or exible. We therefore all it the deisive edges (DE) marketmodel and show that it ontains - among other models - the model of Eriksson and Karlander(2000) as a speial ase. Hohst�attler et al. (2006) developed a polynomial aution algorithm forthe mixed mathing market model of Eriksson and Karlander (2000). We modify their algorithmto prove the existene of a stable outome in our more general DE model. Finally, we show thatour modi�ed aution algorithm runs in O �n4� time.
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Notation
Upperase LettersA, A(v;�) set of ars, set of ars in the augmentation digraph G(v;�)C positive onstantD(v;�)i set of favourite workers of �rm iE set of edgesF , F � set of exible nodes, set of exible edgesG, GD, G(v;�) graph, digraph, augmentation digraphM , M 0 mathingsMn�n set of (n� n)-matriesP , �P , PU set of �rms, speial set of �rms, set of unmapped �rmsQ, �Q, Q2� set of workers, speial set of workers, set of doubly mapped workersQR set of rigidly mapped workersQ2R set of workers with at least two rigid proposalsR, R� set of rigid nodes, set of rigid edgesS, SP , SQ oalition, P -agents in the oalition S, Q-agents in the oalition SV set of nodesLowerase Lettersa, b weight (produtivity) matriese edgef (v;�)ij bene�t of �rm i from a ollaboration with worker jg, h real-valued funtionsi, j index for �rms (P -agents), index for workers (Q-agents)k, l indiesm, n0, r natural numbersn number of �rms, number of workersp, q �rm, workers; y, z start node; nodest natural number or zero: t = minfjSP j ; jSQjgu, �u payo� vetor of �rms, virtual payo� vetor of �rmsv payo� vetor of workersx, xij assignment matrix, primal variablevi



NOTATION viiUpperase Greek Letters�, �j speial quantitiesLowerase Greek Letters�, �ij weight funtion, weight� (S) worth of oalition S� mappingCalligraphi LettersO (nr) polynomial omplexity timeP pathAbbreviationsBFS breadth �rst searhDE deisive edgesDLP dual linear programFB exibility biasi.e. in examplePLP primal linear programRB rigidity biass.t. suh thatw.l.o.g. without loss of generalityw.r.t. with respet to



Chapter 1IntrodutionThe theory of mathing is an unusual blend of disiplines. Over the past years game theory,eonomis, omputer siene and ombinatorial optimisation ontributed to the theory. Wewill onentrate on two-sided mathing in this Bahelor thesis. The probably most prominentexample for two-sided mathing is the labour market. Clearly, any agent in the labour marketis either a �rm or a worker, whih explains why we all suh a market two-sided or bipartite.Thus, we onsider the �nite and disjoint sets of �rms P and workers Q in the labour market.We would like to mention that this is in ontrast to produt markets, where the same agent anat as a seller and as a buyer.1 Obviously, the sellers and buyers are not two disjoint subsetsof the set of all agents in produt markets. Hene, produt markets are not two-sided. Finally,we use the term one-to-one mathing or simply mathing, sine we will study the settingwhere a �rm hires exatly one worker and where all workers will work for one �rm only.2There are two fundamental models for two-sided mathing markets: The marriage modelof Gale and Shapley (1962) and the assignment game of Shapley and Shubik (1972). Inthe marriage model, we onsider the set of men and women who are eligible to marriage insome small village. Eah individual has a preferene list of his/her3 aeptable partners. Theproblem is to �nd a marriage s.t. there is no pair (i; j), where both, man i and woman j, arenot mathed but prefer eah other over their urrent partners. Suh a marriage will be alledstable. Gale and Shapley (1962) proved the existene of a stable marriage with their famous\men-propose-women-dispose" algorithm in the ase where preferene lists are strit.In the assignment game, we attah a money value to eah edge and all it the edge's weight.Clearly, money is a ontinuous variable and hene, the market will be ontinuous. In the labourmarket, this money value attahed to any edge onneting a �rm i with a worker j an be thoughtof as the total produtivity that installs if worker i is employed by �rm j. This produtivityan be freely transferred between the agents.4 The possibility of monetary transfers makes theassignment game exible ompared to the rigid marriage problem. A solution of an assignment1Imagine an agent who ats as a seller if the prie is suÆiently high. For low enough pries the same agentis likely to at as a buyer.2For a highly eduated worker applying for a high position in a �rm suh a setting is very realisti. Forexample, we ould study the mathing of �rms and hief �nanial oÆers. On the other hand, if we study lowlevel jobs, then we should allow that a �rm hires several workers for the same job instead.3For the sake of brevity we omit any female forms if possible in the remainder of the thesis.4In the urrent example of the labour market, the produtivity an be transferred through the wage the workerreeives. 1



CHAPTER 1. INTRODUCTION 2game onsists of a mathing of �rms with workers5 and an alloation of the orrespondingweight and will be alled an outome. If no pair reeives less than the weight of its onnetingedge, then we all the solution a stable outome. Tehnially speaking, the assignment gameamounts to the determination of a maximally weighted mathing in the bipartite graph of�rms and workers. Shapley and Shubik (1972) showed the existene of stable outomes viaduality arguments of linear programming. The lassi algorithm for weighted bipartite graphsis undisputably Kuhn's Hungarian method6.The pratial relevane of both models is immense. For instane, let us onsider some newgraduates in mathematis. They have the disrete hoie of entering either the publi or theprivate labour market. To be more spei�, they an beome a teaher of mathematis atsome high shool or they an work in the risk department of some insurane ompany. If agraduate deides to beome a teaher, then his salary will be �xed. This part of the market isappropriately desribed with the marriage model. On the other hand, if a graduate hooses towork for an insurane ompany, then his salary will no longer be �xed. Instead, the graduateand the ompany will ontrat on the salary among other job harateristis. This part ofthe market an be appropriately modelled with the assignment game, whih allows monetarytransfers. Taken together, it is learly tempting to study the entire market - the private andthe publi labour market - simultaneously within a single model. We will refer to suh models,whih ontain rigid as well as exible aspets, as mixed mathing markets.We would like to give a historial remark that highlights the pratial relevane of mathingtheory.7 The Amerian Hospital Assoiation and the Assoiation of Amerian Medial Collegesagreed in 1951 to use a entral algorithm to math medial students with medial interns ofhospitals. For a liberal ountry like the United States, this seems to be quite remarkable. Theagreement to use a entral mathing was aused by a disastrous market situation. The numberof positions for interns was greater than the number of medial students applying for suhpositions. The resulting onsiderable ompetition among hospitals manifested itself in the fatthat hospitals attempted to �nalise binding agreements with student earlier than their prinipalompetitors. This led to a ostly and ineÆient market situation: Hospitals did not knowthe �nal grades of their appointed students while the students and the medial shools foundthat shooling was disrupted by the tedious proess of seeking desirable interns. The entralmathing algorithm8 was implemented as a voluntary proedure. Students and hospitals werefree to arrange their mathes outside of the system. Despite this voluntariness, the partiipationrates initially exeeded 95 perent.The marriage problem and the assignment game lead to very similar results: Equality of theore and the set of stable outomes as well as the lattie struture of the ore. Thus, it is notvery surprising that Roth and Sotomayor (1996) asked for an explanation of these similarities inthe two mentioned models. Eriksson and Karlander (2000) addressed the hallenge of Roth andSotomayor (1996) by presenting a mixed mathing market model9 that ontains the marriage5To be more general: A mathing of P -agents with Q-agents.6See the origin work of Kuhn (1955) or the more reent treatment of Frank (2004).7See Roth (1984), Roth (1991) or the omprehensive treatment of two-sided mathing of Roth and Sotomayor(1999) for a thorough examination.8It was alled NIMP: N�ational I�ntern M� athing P�rogram.9The so-alled RiFle (RigidFlexible) assignment game.



CHAPTER 1. INTRODUCTION 3problem and the assignment game as speial ases. They allow for rigid and exible playersin their model and de�ne an edge to be rigid if at least one of the players involved is rigid.Eriksson and Karlander (2000) �nally provided a pseudo-polynomial aution algorithm to provethe existene of stable outomes in their mixed mathing market model. Based on the ideasof Eriksson and Karlander (2000), Hohst�attler et al. (2006) onstruted a polynomial autionalgorithm and proved that it runs in O �n4� time where 2n denotes the number of players.Their aution algorithm will serve as a benhmark for our work. Parallel to this branh ofthe literature, Sotomayor (2000) also showed that there is always a stable outome in a mixedmathing market model whih is very similar to the model of Eriksson and Karlander (2000).Finally, Hohst�attler et al. (2005) derived another polynomial algorithm from the key lemmasof Sotomayor (2000) and showed that this algorithm also runs in O �n4� time. In this thesis wegive a further generalisation of the mixed mathing market model of Eriksson and Karlander(2000). In ontrast to the model of Eriksson and Karlander (2000), we de�ne the rigidity orexibility of any edge to be independent of the players involved. We all the resulting marketthe deisive edges (DE) market model and show the usefulness of suh a generalisation. Weintrodue a modi�ation of the aution algorithm of Hohst�attler et al. (2006) and exploit it toprove the existene of a stable outome in our general DE model. Furthermore, we show thatour modi�ed aution algorithm runs in O �n4� time, too. Lastly, we would like to mention theinteresting mathing market model of Fujishige and Tamura (2004). They generalise the mixedmathing market of Eriksson and Karlander (2000) by modelling the preferenes of agents oneah side over the agents on the other side with onave utility funtions. However, our modelis not ontained in theirs and vie versa.The thesis is strutured as follows. First, we present some basi mathematial onepts thatwill help the reader to understand the remainder of the thesis. Chapter 3 then presents di�erentmathing market models. We begin with two famous speial ases: The assignment game andthe marriage model. These two models are ontained in the mixed mathing market model ofEriksson and Karlander (2000). Afterwards, we give a further useful generalisation: The deisiveedges (DE) market model. We will show that the model of Eriksson and Karlander (2000) andmany other models are simply speial ases of this DE model, whih will be studied in theremainder of the thesis. In hapter 4 we introdue a modi�ation of the aution algorithmof Hohst�attler et al. (2006). We then perform the main task of the thesis: We exploit thementioned modi�ed aution algorithm to give a onstrutive proof of the existene of a stableoutome in our general DE market model. Besides the orretness of the modi�ed autionalgorithm, we establish the result that it runs in O �n4� time. Lastly, we lose the thesis bygiving some onrete examples and a omparison to the aution algorithm of Hohst�attler et al.(2006).



Chapter 2Mathematial PreliminariesIn this hapter we introdue the mathematial onepts that will be exploited in the remainderof the thesis. For the sake of brevity, we will ustomise these preliminaries to our future needs.For a more general and more thorough treatment we refer the interested reader to Ahuja et al.(1993), Hohst�attler (1999), Jungnikel (2005) and Aigner (2006).2.1 Some Conepts in Graph TheoryWe �rst give the de�nition of a digraph and a graph, respetively.Definition: 2.1 (Digraph and Graph) Let V and A denote a �nite set of nodes (ver-ties) and a �nite set of ars, respetively. We denote an ar by the ordered pair (z1; z2) withz1; z2 2 V where z1 and z2 represent the head and tail node, respetively. We all the tupleGD = (V;A) a direted graph or simply a digraph.If the orientation of the ars is irrelevant, then we all them edges and denote the set of alledges with E. We denote an edge by the unordered pair (z1; z2) with z1; z2 2 V where z1 andz2 represent the two end nodes of the edge.1 Finally, we all the tuple G = (V;E) a graph. 2With a slight abuse of notation we adopt the onvention that the �rst entry z1 of an edge(z1; z2) denotes a �rm while the seond entry z2 represents a worker. We will need the followingde�nitions to desribe a mathing.Definition: 2.2 (Inident Nodes and Edges) We onsider the graph G = (V;E). Anode z 2 V is alled inident to an edge e = (z1; z2) 2 E if z = z1 or z = z2. Finally, two edgese1 = (y1; z1) ; e2 = (y2; z2) 2 E are inident if fy1; z1g \ fy2; z2g 6= ;. 2Lastly, the onept of a path will be fundamental in our modi�ed aution algorithm 4.1.Definition: 2.3 (Path in a Digraph) A path P = (z1; z2; :::; zl) in a digraph GD =(V;A) is a sequene of verties zi 2 V s.t. (zi; zi+1) 2 A and zi 6= zj for all i 6= j. We say thatthe node zl is reahable from the node z1 with the path P. 2In the remainder of the thesis, we will rule out loops and multigraphs. Instead, we will studylabour markets, where an agent is either a �rm or a worker. Moreover, we want to ensure that1A loop is an edge onneting a node to itself. Thus, we an have z1 = z2 in ase of a loop.4



CHAPTER 2. MATHEMATICAL PRELIMINARIES 5eah �rm an ontrat with eah worker and vie versa. This leads to the following speial aseof a graph.Definition: 2.4 (Complete Bipartite Graph) A graph G = (V;E) is alled bipartiteif it allows for a partition of the set of nodes V = P _[Q s.t. eah edge has one end node in P andthe other in Q. A bipartite graph with jP j = n and jQj = m is alled omplete if it satis�esE = f(p; q) j p 2 P; q 2 Qg, whih implies that we have jEj = nm. 2Note that a omplete bipartite graph ontains almost all the relevant aspets of the labourmarket we want to study. We an de�ne P as the set of �rms and Q as the set of workers.Clearly, these two sets are �nite and disjoint in the labour market.2.2 Mathing in Complete Weighted Bipartite GraphsAs previously mentioned, we only have edges onneting a �rm with a worker in ompletebipartite graphs. We now attah a money value to eah edge (i; j) that an be thought of asthe total produtivity that installs if a worker j is employed by a �rm i. Obviously, suh aprodutivity must be nonnegative.Definition: 2.5 (Weighted Graph) A graph G = (V;E; �) is alled weighted if it hasa weight funtion � : E ! R+ . 2From now on we assume a omplete weighted bipartite graphG = (V;E; �) with jP j = jQj = n.This assumption is innoious, sine we an always introdue dummy nodes with zero weights.We next turn to the fundamental de�nition of a mathing. Beause we are interested in thesituation where eah �rm wants to hire one worker and eah worker an only be employed byone �rm, the mathing will be one-to-one.2 For the sake of brevity, we simply use the termmathing.Definition: 2.6 (Mathing in a Weighted Bipartite Graph, Weight of a Math-ing) We onsider a weighted bipartite graph G = (V;E; �) with V = P _[Q. A mathingM � E is a set of pairwise non-inident edges. We all two nodes p 2 P and q 2 Q mathedwith eah other if (p; q) 2M . Moreover, we all a node unmathed if it is not inident withan edge of M . We de�ne the weight of a mathing M as � (M) = Pe2M� (e). Finally, we all Ma maximally weighted mathing if � (M) � � (M 0) for all other mathings M 0. 2We will see that the assignment game boils down to �nding a maximally weighted mathingin a omplete weighted bipartite graph.2The omprehensive treatment of two-sided mathing of Roth and Sotomayor (1999) also ontains a hapteron many-to-one mathing. Additionally, the interested reader an also �nd examples of non-two-sided mathingsuh as the roomate problem or the man-woman-hild problem. In all the mentioned problems however, we donot neessarily have stable outomes.



CHAPTER 2. MATHEMATICAL PRELIMINARIES 62.3 Algorithms and ComplexityLet us give the following rather informal de�nition of an algorithm.Definition: 2.7 (Algorithm) We de�ne an algorithm as an exat �nite desription ofa sequene of a �nite number of steps that establish a ertain goal. However, eah step must beunique and eÆiently exeutable. Finally, the algorithm must terminate after the �nite numberof steps. 2We will formulate our modi�ed aution algorithm in pseudo-ode. Moreover, we will sometimesviolate the uniqueness ondition for the sake of expositional ease. However, all suh violationsan easily be remedied by ertain rules like seleting the node with the lowest index in ase thereare several nodes to operate on at some step in the algorithm.Besides the orretness, a major harateristi of any algorithm is its runtime behavior. Wewill make use of the O-notation to give upper bounds on the omplexity of our modi�ed autionalgorithm and to ompare its runtime behavior with those of other algorithms.Definition: 2.8 (Complexity, O-Notation) We onsider the funtions g : N ! N andh : N ! N. We write g = O (h) if there exist C > 0 and n0 2 N s.t. g (n) � Ch (n) for alln � n0. 2Note that we have to read the equation g = O (h) from the left to the right.3 Moreover,we would like to mention that if a problem an only be solved with algorithms displayingexponential growth in their runtimes, then the problem is generally onsidered to be insolvable.Thus, algorithms of interest exhibit at most polynomial runtimes4. Fortunately, we will be ableto prove that our modi�ed aution algorithm runs in O �n4� time.2.4 Breadth First SearhOur modi�ed aution algorithm will exploit the breadth �rst searh as a subroutine. We alreadypresent this standard searh method here, sine we want to fous on the really relevant aspetsof the algorithm later.The breadth �rst searh (BFS) determines all nodes that are reahable in a given digraphfrom a given start node. For this purpose, BFS �rst visits all nodes that are reahable withonly one ar from the start node, marks these nodes as visited and stores them in a queue. Assoon as all suh diretly reahable nodes are visited, we remove a node from the queue (urrentnode), visit all unvisited nodes that are diretly reahable from the urrent node and put themon the queue. BFS ontinues in this manner until some termination ondition is met or thequeue has beome empty. The following algorithm in pseudo-ode implements the breadth �rstsearh. It must be alled with BFS((GD; s)) where GD is some direted graph and s denotesthe start node of the searh.53Otherwise, we ould get the ontradition n = n2 from n = O �n2� and n2 = O �n2�.4That is, their runtime funtions must be in O (nr) for some r 2 N.5Our modi�ed aution algorithm will exploit BFS to determine all nodes that are reahable in the augmen-tation digraph from the set of doubly mapped workers. Hene, we use some variant of the presented algorithm.Spei�ally, we exeute lines 3 and 4 for all doubly mapped workers. Moreover, we will not use a terminationondition and read o� the reahed nodes from the vetor Predeessor in the very end.



CHAPTER 2. MATHEMATICAL PRELIMINARIES 7Algorithm 2.9: Breadth First Searh (BFS)1: Queue ;2: Predeessor  03: Predeessor [s℄ �1 3 The path begins here4: Queue:append (s) 3 Put s on the queue5: while Queue 6= ; do6: y = Queue:top () 3 Take y and remove it from the queue7: for z 2 y:Neighbourhood do 3 There is an ar from y to z8: if Predeessor [z℄ = 0 then9: Predeessor [z℄ y10: if z satis�es termination ondition then11: P  (s; :::; z)12: else13: Queue:append (z)14: end if15: end if16: end for17: end whileThe next hapter will present di�erent mixed mathing market models.



Chapter 3Mathing Market ModelsIn this hapter we �rst present the assignment game of Shapley and Shubik (1972) and after-wards the marriage model of Gale and Shapley (1962). We use general notation from the verybeginning, sine these two models are speial ases of the quite general mixed mathing marketmodel of Eriksson and Karlander (2000). Finally, we introdue a further useful generalisation:The deisive edges (DE) market model. This most general model will be exploited in the re-mainder of the thesis. The entire hapter is devoted to develop some intuition for the presentedmathing market models. We therefore do not attempt to give a thorough introdution to thevarious existing models.1As previously mentioned, we always assume w.l.o.g. that jP j = jQj = n. The P - and the Q-agents will also be alled the �rms and the workers of a labour market, respetively. Eah �rman ontrat with eah worker and vie versa. However, eah �rm is interested in hiring exatlyone worker and eah worker an only be employed by one �rm. Hene, the goal is to �nd stableone-to-one mathings2. For the sake of brevity, we simply use the term mathing from now on.Instead of �rms and workers, the reader an imagine sellers and buyers in a market where eahseller possesses one indivisible good and eah buyer is interested in purhasing one suh good.The sets of sellers and buyers are �nite, disjoint and denoted with P and Q, respetively. Wedenote a nonnegative real number (weight) �ij with eah partnership (pi; qj) with i; j 2 Nn .This number an be thought of as the di�erene between the reservation prie of the buyer andthe seller. Let us ome bak to our guiding example: The labour market. We then interpret �ijas the worth of produtivity when the worker qj is hired by the �rm pi. For notational ease, leti and j be the index for �rms and workers for the remainder of the thesis.Besides V = P _[Q, we now introdue the additional partition of players V = R _[F whereR and F denote the set of rigid and exible players, respetively. Rigid agents want a �xedsalary while exible agents prefer to ontrat on the salary. Moreover, we replae the weightfuntion � : E ! R+ with the two produtivity matries a; b 2 Mn�n (R+) in the sensethat3 � (i; j) = �ij = aij + bij for eah edge (i; j) 2 E. Additionally, we de�ne a payo� as the1The interested reader is referred to Roth and Sotomayor (1999), Eriksson and Karlander (2000) and Jin(2005).2The omprehensive treatment of two-sided mathing of Roth and Sotomayor (1999) ontains a hapter onmany-to-one mathing.3As previously mentioned, we use general notation already here. The meaning of this notation will be explainedin setion 3.3. 8



CHAPTER 3. MATCHING MARKET MODELS 9pair (u; v) of the vetors u; v 2 Rn . The vetors u and v represent the bene�t of the �rms andworkers, respetively.3.1 Speial Case I: Assignment GameIf we set R = ; in the mixed mathing market model of Eriksson and Karlander (2000)4, then weobtain the famous assignment game of Shapley and Shubik (1972). Money plays an importantrole in this ooperative game. The worth of any oalition of players S is determined solely withthe best pairwise ombination that the members of the oalition an form. Thus, we have1. � (S) = 0 if S ontains either only P -agents or only Q-agents,2. � (S) = aij + bij if S = (i; j) with i 2 P and j 2 Q;3. � (S) = max f� (i1; j1) + � (i2; j2) + :::+ � (it; jt)g with f(i1; j1) ; (i2; j2) ; :::; (it; jt)g � SP�SQ where SP and SQ denote the P - and Q-agents in S and where t = min fjSP j ; jSQjg.The rules of the game allow the members of a oalition to split their worth in any way theylike. Hene, we do not only allow that monetary transfers are made between mathed partners5but we do also allow for transfers between unmathed members of a oalition.6 Clearly, we musthave Pi2SP ui+Pj2S vj = � (S). The problem is to determine � (S) for the given produtivitymatries a and b and is alled the assignment problem. Of ourse, we are espeially interestedin omputing � (P _[Q), sine this is the maximum total payo� available to the players of thegame.The assignment problem is equivalent to the problem of �nding a maximally weighted mathingin the omplete weighted bipartite graph G = (V;E; a; b) with the produtivity matries a and b.Fortunately, Kuhn (1955) developed the popular Hungarian method7, whih �nds a maximallyweighted mathing in weighted bipartite graphs. The Hungarian method learly inuened ourwork, as the reader will see when we present our modi�ed aution algorithm in setion 4.2 aswell as later in example 4.8 where we solve an instane of the assignment game. We an astthe assignment problem into the following linear program (PLP).Problem 3.1 (Primal Linear Program) Maximise Pi;j (aij + bij) � xij subjet to Pi xij �1 for all j 2 Nn , Pj xij � 1 for all i 2 Nn and xij � 0 for all i; j 2 Nn .If xij = 1, then i and j form a partnership and xij = 0 otherwise. Clearly, Pi xij = 0 meansthat i is unassigned.We next give the orresponding dual linear program (DLP).Problem 3.2 (Dual Linear Program) MinimisePi2P ui+Pj2Q vj subjet to ui � 0; vj �0 and ui + vj � aij + bij for all i; j 2 Nn .4See setion 3.3.5These are the obvious transfers, sine a �rm will pay the employed worker a ertain wage.6This assumption implies that there an also be monetary transfers between workers, for instane in a labourunion, and between �rms, for instane in an employer assoiation.7See the origin work of Kuhn (1955) or the more reent treatment of Frank (2004).



CHAPTER 3. MATCHING MARKET MODELS 10It an be shown that there exists an integer solution to the primal linear program.8 Hene,we an onlude that the above dual linear program must have an optimal solution. Aordingto the fundamental duality theorem of Dantzig (1963, p. 129) we therefore have idential valuesfor the objetive funtions of the PLP and the DLP, respetively. Thus, if the matrix x is anoptimal assignment and if (u; v) is a solution to the DLP, then we getXi2P ui +Xj2Q vj =Xi;j (aij + bij) � xij = � (P _[Q) : (3.1)We highlight the fat that the pair (u; v) of the dual variables u and v orresponds to thepayo� of the game. Let us now think about the solution of the game, whih we all an outome.Aording to (3.1) an outome onsists of a mathing and the payo� (u; v). We next de�ne thestability of the payo� and the outome.Definition: 3.3 (Payoff and Outome Stability) A payo� (u; v) is alled stable if(i) ui + vj � aij + bij for all edges (i; j) 2 P �Q.A stable outome (u; v;�) onsists of a stable payo� (u; v) and a bijetive map � : P ! Qs.t.(ii) ui � 0 and vj � 0 for all (i; j) 2 P �Q,(iii) ui + vj = aij + bij for all (i; j) 2 P �Q if j = � (i). 2Let us assume for the moment that we have ui + vj < aij + bij for some edge (i; j) 2 P �Q.Obviously, �rm i and worker j an earn more if they leave their urrent partners and ollaboratewith eah other. Suh a situation annot be stable and hene, the pair (i; j) is alled a blokingpair. We note that ondition (i) in the above de�nition 3.3 prevents any bloking pairs, whileondition (ii) ensures individual rationality.This is the way how Shapley and Shubik (1972) showed that the stable payo�s of the assign-ment game (u; v) exist and that they are the solution of a dual linear program to the primal linearprogram for maximally weighted bipartite mathings. Moreover, they proved the equality of theore9 and the set of stable outomes as well as the lattie struture of the ore. Interestingly,we will see the same results in the following marriage model.3.2 Speial Case II: Marriage ModelIf we set F = ; in the mixed mathing market model of Eriksson and Karlander (2000)10, thenwe obtain the famous marriage model of Gale and Shapley (1962). We onsider all men andwomen eligible for marriage in some small and isolated village. Thus, we imagine the P -agentsto be the male and the Q-agents to be the female marriage andidates. Obviously, the two setsP and Q are then �nite and disjoint as postulated. Eah man has a preferene list11 over all8The interest reader is referred to Dantzig (1963, p. 318).9The ore of a game is the set of undominated outomes. Sine the set of stable outomes in the assignmentgame is de�ned w.r.t. all kinds of oalitions, it trivially oinides with the ore.10See setion 3.3.11For the agents' preferenes Gale and Shapley (1962) imposed the ompleteness, the transitivity and theindepene assumption. All mentioned assumptions are standard in eonomis.



CHAPTER 3. MATCHING MARKET MODELS 11women and eah woman has a preferene list over all men. We represent these preferene listswith the matries a and b. For example, aik > ail then means that man i stritly prefers womank to woman l. On the other hand, woman j prefers man k to man l if bkj � blj whereas sheis indi�erent between the two men if bkj = blj . If a man and a woman both onsent to marryone another, then they may proeed to do so. The problem is to �nd a set of marriages s.t.there exists no pair (i; j) that prefers eah other over their urrent partners. We next de�ne thestability of the payo� and the outome.Definition: 3.4 (Payoff and Outome Stability) A payo� (u; v) is alled stable if(i) ui � aij or vj � bij for all (i; j) 2 P �Q.A stable outome (u; v;�) onsists of a stable payo� (u; v) and a bijetive map � : P ! Qs.t.(ii) ui � 0 and vj � 0 for all (i; j) 2 P �Q;(iii) ui = aij and vj = bij for all (i; j) 2 P �Q if j = � (i). 2Let us assume for the moment that we have ui < aij and vj < bij for some edge (i; j) 2 P �Q.Obviously, man i and woman j are then better o� if they leave their urrent partners and marryeah other. Suh a situation annot be stable and hene, the pair (i; j) is alled a bloking pair.Note that ondition (i) in the above de�nition 3.4 prevents any bloking pairs, while ondition(ii) ensures individual rationality. Moreover, we note that the outome is ompletely determinedby the mathing, sine the mathing implies the payo� as an be seen from ondition (iii) in theabove de�nition 3.4.Gale and Shapley (1962) proved with their famous \men-propose-women-dispose" algorithm12that there is always a stable outome when preferenes are strit. We note that the proedurePlaeRigidProposals of our modi�ed aution algorithm in setion 4.2 is based on the \men-propose-women-dispose" algorithm. We will see this later in example 4.7 where we solve aninstane of the marriage problem. Finally, Gale and Shapley (1962) proved the equality of theore13 and the set of stable outomes as well as the lattie struture of the ore. Note that wehave enountered the same results in the assignment game, too. Thus, it is not very surprisingthat Roth and Sotomayor (1996) asked for an explanation of these similarities in the marriagemodel and the assignment game. Eriksson and Karlander (2000) addressed the hallenge of Rothand Sotomayor (1996) by giving a mixed mathing market model that ontains the marriageproblem and the assignment game as speial ases. The next setion deals with their model.12Roth and Vate (1990) show that there is an alternative to the \men-propose-women-dispose" algorithm. Theystart with any mathing and randomly selet any bloking pair to derive a new mathing. Roth and Vate (1990)prove that suh a random sequene of mathings onverges to a stable mathing. Thus, they provide a family ofalternative algorithms to reah a stable mathing.13Again, the ore of a game is the set of undominated outomes. The di�erene between the set of stableoutomes and the ore in the marriage model is that the ore is undominated w.r.t. all oalitions whereas the setof stable outomes is de�ned w.r.t. ertain kinds of oalitions only: Single oalitions and pairs of a man and awoman.



CHAPTER 3. MATCHING MARKET MODELS 123.3 Mixed Mathing Model of Eriksson and Karlander (2000)In ontrast to the two previous models, Eriksson and Karlander (2000) simultaneously al-low for rigid and exible players. They then de�ne the set of rigid and exible edges R� =f(i; j) 2 P �Q j i 2 R or j 2 Rg and F � = f(i; j) 2 P �Q j i 2 F and j 2 Fg, respetively.Thus, they assume that a ontrat will be �xed if at least one of the two parties prefers a�xed salary. Obviously, this is an arbitrary assumption. Note that we get F � [R� = P �Q. Ifworker j gets employed by �rm i and if (i; j) 2 R�, then we set ui = aij and vi = bij. On theother hand, if (i; j) 2 F � and �rm i hires worker j, then we set ui+ vj = aij + bij. Thus, we aninterpret vj as the worker's salary. This salary is �xed if the ontrat is rigid. If the ontrat isexible, then the worker's wage is no longer �xed but it must be negotiated. Consequently, weonly postulate that the sum of the �rm's and the worker's bene�t equals the total produtivityfrom the ollaboration in this ase. Taken together, we onsider the omplete weighted bipartitegraph G = (V;E; a; b) with V = P _[Q = R _[F and the two nonnegative produtivity matriesa and b. We next give the stability de�nition in the mixed mathing market model of Erikssonand Karlander (2000).Definition: 3.5 (Payoff and Outome Stability) A payo� (u; v) is alled stable ifthe following two onditions are satis�ed for every edge (i; j) 2 P �Q:(i) ui + vj � aij + bij if (i; j) 2 F �,(ii) ui � aij or vj � bij if (i; j) 2 R�.A stable outome (u; v;�) onsists of a stable payo� (u; v) and a bijetive map � : P ! Qs.t.(iii) ui � 0 and vj � 0 for all (i; j) 2 P �Q,(iv) ui + vj = aij + bij if j = � (i) and (i; j) 2 F �,(v) ui = aij and vj = bij if j = � (i) and (i; j) 2 R�. 2Note that onditions (i) and (ii) in the above de�nition 3.5 prevent any bloking pairs, whileondition (iii) ensures individual rationality. Finally, onditions (iv) and (v) set the payo�s ofexible and rigid mathes. We would like to highlight the fat that the above stability de�nition3.5 speialises to the stability de�nition 3.3 of the assignment game if we set R = ; and to thestability de�nition 3.4 of the marriage model in the speial ase of F = ;. This should not omeas a surprise, sine the assignment game and the marriage model are speial ases of the urrentmixed mathing market model of Eriksson and Karlander (2000).Finally, Eriksson and Karlander (2000) proved with a pseudo-polynomial aution algorithmthat there always exists a stable outome in the presented mixed mathing market model. Basedon their work, Hohst�attler et al. (2006) developed a polynomial aution algorithm that runs inO �n4� time. We will give a modi�ation of their aution algorithm in setion 4.2.



CHAPTER 3. MATCHING MARKET MODELS 133.4 Deisive Edges Market ModelWe now give a useful generalisation of the previous mixed mathing market model of Erikssonand Karlander (2000). In ontrast to the model of Eriksson and Karlander (2000), the natureof any ontrat will not depend on the harateristis of the players involved, but it will bedetermined solely by the edge that onnets any two players. We reall that a ontrat isexible in the model of Eriksson and Karlander (2000) if and only if both players are exible.Put di�erently, a ontrat is rigid if at least one of the players is rigid. Thus, the set of rigidand exible edges R� and F �, respetively, are de�ned asR� = f(i; j) 2 P �Q j i 2 R or j 2 Rg (3.2)and F � = f(i; j) 2 P �Q j i 2 F and j 2 Fg : (3.3)Let us therefore refer to the model of Eriksson and Karlander (2000) as the rigidity bias(RB) market model.Alternatively, we ould study a market where a ontrat is rigid if and only if both playersare rigid. Put di�erently, a ontrat is exible if at least one of the players is exible. Hene,we ould swith the logial operators in the de�nitions of R� and F � of the RB model in (3.2)and (3.3), respetively. The resulting market model is onsequently alled the exibility bias(FB) market model. We then haveR� = f(i; j) 2 P �Q j i 2 R and j 2 Rg (3.4)and F � = f(i; j) 2 P �Q j i 2 F or j 2 Fg : (3.5)Regardless of whether we onsider the RB or the FB market model, we learly have stritrules that determine the set of rigid and exible edges R� and F �, respetively, by exploitingthe nature of the players involved. We ould make up di�erent rules for these sets and endup with various di�erent mixed mathing market models. However, all these \rule-based"market models are trivially speial ases of the market model that uses no rule at all: Thedeisive edges (DE) market model. In the DE model we do not model rigid and exibleplayers. Instead, we diretly de�ne whether an edge is rigid or exible. Moreover, we do so inan arbitrary general way. This means that we an de�ne the rigidity or exibility of eah edgeindividually, i.e. ompletely independent of all other edges. Put di�erently, the sets of rigid andexible edges R� and F �, respetively, are allowed to form an arbitrary partition of P � Q inthe DE model. However, the de�nition of R� and F � is the only di�erene to the RB model,whih means that de�nition 3.5 of a stable payo� and outome also applies to the urrent DEmodel.14 We will fruitfully exploit the generality of the DE market model in the remainder ofthe thesis: We will prove the existene of stable outomes in the DE model. Clearly, all theresults that will be developed for the DE model arry over to the speial ases, i.e. the RB andthe FB market model.14For the same reason, de�nition 3.5 of ourse applies to the FB model and any other \rule-based" marketmodel, too.



CHAPTER 3. MATCHING MARKET MODELS 14Before we move on to solve the DE model, we want to think about the rigidity and exibilityof ontrats and thereby show that the DE market model represents a useful generalisation ofthe mixed mathing market model of Eriksson and Karlander (2000). In the labour market,we mainly distinguish between private �rms and publi organisations. Intuitively, private �rmstend to behave more exibly ompared to publi organisations. On the other side of the labourmarket, we mainly disern between members and non-member of labour unions15. Labour unionsgive wage reommendations and some agents feel obliged to follow them while others do not.16Moreover, whether an agent feels more or less obliged to follow suh reommendations probablydepends on the mathing partner. If a private �rm hires for instane a prominent member oreven a leader of a labour union, then it is very likely to follow the reommendations. In a\rule-based" market model we an aount for this situation by de�ning the private �rm as aexible and the prominent labour unionist as a rigid player, respetively, and by de�ning anedge as rigid if at least one of the players involved is rigid (i.e. adopting the RB model). If thesame private �rm (modelled as a exible player) ontrats with a ompletely unknown labourunionist (learly a rigid player), then it is likely to ontrat on the salary instead of following a�xed wage reommendation. However, using a \rule-based" market model, we had to adopt theRB model beause of the �rst edge. Thus, we annot model this seond edge appropriately asexible. In our general DE market model, we are able to model the �rst edge as rigid and theseond as exible. In fat, we an de�ne eah edge independently of the players involved in theDE model.Let us present another situation that no \rule-based" market model an aount for. Weonsider two exible workers and a �rm p o�ering these two workers a job. The �rm prinipallywants to ontrat on the salary. This is what happens in the ontrat of this �rm with worker1. Moreover, let worker 2 be a real good math for the �rm p. Flexibly ontrating with himhowever, would possibly disrupt the �rm's wage-hierarhy struture. Thus, we would like tode�ne the edges (p; 1) and (p; 2) as exible and rigid, respetively. This is learly not possiblewith any \rule-based" market model but no problem at all for our general DE market model.We give a last example for the shortoming of any \rule-based" market model and hereby anexample illustrating the usefulness of our deisive edges model. Let all workers in this examplebe exible. Note that not all labour unions are equally strong. Thus, there are minimum wagesfor some jobs while there are no minimum wages for others.17 Imagine that �rm 1 o�ers a jobto worker 1 where a minimum wage applies while there is no minimum wage applying to thejob o�er of �rm 2 to any worker. Clearly, we will have to de�ne �rm 1 as rigid and �rm 2 asexible in a \rule-based" market model, sine we want the edges (1; 1) and (2; 1) to be rigidand exible, respetively. Moreover, we have to de�ne an edge as rigid if at least one of the twoplayers involved is rigid (adopting the RB model).18 Having all this set, we annot model thesituation where �rm 1 (rigid player) o�ers a job to worker 2 where no minimum wage applies.1915Highly riskaverse and slightly riskaverse workers would be another distintion that leads to the same onlu-sion.16Note that this onerns both sides of the labour market, sine a human resoure hief of a ertain �rm anbe a member of a labour union or not.17Alternatively, we ould imagine strong wage reommendations for some jobs and weak wage reommendationsfor other jobs.18Note that all de�nitions have been neessary and unique.19We an think of several reasons why there should not be a minimum wage applying to the edge (1; 2). The



CHAPTER 3. MATCHING MARKET MODELS 15Again, the DE market model an desribe this situation appropriately, while any \rule-based"market model like the RB or the FB market model annot.Besides all the mentioned eonomi reasons, there is of ourse genuine mathematial interestfor our generalisation.The following hapter is devoted to the main task of the thesis: It presents our modi�edaution algorithm and exploits it to prove that there exists a stable outome in the general DEmarket model.

job o�er of �rm 1 to worker 2 an be di�erent from the one to worker 1, sine worker 1 and 2 di�er in apabilities,eduation, physial ondition, domiile, marital status, disablement and so on.



Chapter 4Modi�ed Aution Algorithm in theDE ModelEriksson and Karlander (2000) provided a pseudo-polynomial aution algorithm to prove theexistene of stable outomes in their mixed mathing market model, whih we all the RB mar-ket model. Based on the ideas of Eriksson and Karlander (2000), Hohst�attler et al. (2006)onstruted a polynomial aution algorithm and proved that it runs in O �n4� time where 2ndenotes the number of players. In this hapter we �rst give some neessary de�nitions. After-wards, we present a modi�ation of the aution algorithm of Hohst�attler et al. (2006). Wethen establish its orretness in our general DE market model1 and hereby prove the existeneof a stable outome in the DE market model. Moreover, we show that our modi�ed autionalgorithm runs in O �n4� time, too. Finally, we lose the hapter (and thereby the thesis) bygiving onrete examples that show how our algorithm works and why our modi�ations to theaution algorithm of Hohst�attler et al. (2006) are neessary.4.1 Some De�nitionsAs previously mentioned, we will assume that jP j = jQj = n, sine we an always introduedummy nodes with zero edge weights. Let � : P ! Q be a partial map and let i and j denotethe index for �rms and workers, respetively. If � (i) = j, then we say that �rm i proposes toworker j. A proposal is alled exible or rigid if the orresponding edge is exible or rigid.Moreover, we all a �rm i (a worker j) mapped if i 2 ��1 (Q) (if j 2 � (P )) and unmappedotherwise. If � (i1) = � (i2) = j with i1 6= i2, then j is alled doubly mapped.2 Furthermore,we reall the de�nition of a payo� as a pair (u; v) with the vetors u; v 2 Rn . Moreover, we usethe following notation:PU set of unmapped �rmsQ2� set of doubly mapped workersQR set of rigidly mapped workersQ2R set of workers with at least two rigid proposals1See setion 3.4.2Note that any multiply mapped worker is ontained in this de�nition of a doubly mapped worker, i.e. a triplyor quadruply mapped worker et. 16



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 17Furthermore, we de�nef (v;�)ij := 8>>>><>>>>: aij + bij � vj if (i; j) is a exible edgeaij if (i; j) is rigid and vj < bijaij if (i; j) is rigid and vj = bij and � (i) = j0 otherwise. (4.1)Obviously, f (v;�)ij denotes the possible pro�t �rm i reeives from a ontrat with the workerj given the workers' payo� vetor v. Note that f (v;�)ij additionally depends on the mapping �.3We de�ne the augmentation digraph G(v;�) as the direted subgraph of G with the ar setA(v;�) := f(j; i) j j = � (i)g [ n(i; j) j j 2 D(v;�)i o ; (4.2)where D(v;�)i := �j 2 Q j f (v;�)ij = maxk f (v;�)ik � : (4.3)Note that D(v;�)i is the set of workers that maximise the potential bene�t of �rm i. Thus,D(v;�)i ontains the favourite partners of the �rm i given the urrent workers' payo� v and theurrent mapping �. In the augmentation digraph G(v;�) we therefore have mapping bakwardars and forward ars that end in a favourite partner of the orresponding �rm. A diretedpath P in G(v;�) that onnets a doubly mapped worker j1 2 Q2� with another worker jl isalled (�-) alternating. If jl is unmapped, then the path P is alled (�-) augmenting. Lastly,we let BFS �G(v;�); Q2�� denote a proedure that implements a breadth �rst searh4 in theaugmentation digraph G(v;�). It returns all nodes that are reahable in G(v;�) from the set Q2�.We are now ready to give the de�nition of our modi�ed aution algorithm in the next setion.4.2 The Modi�ed Aution AlgorithmWe �rst present the main part of our modi�ed aution algorithm.5Algorithm 4.1: Modi�ed Proedure Constrution of a Stable Outome1: v  02: PlaeRigidProposals3: while Q2� 6= ; do4: while there is a �-alternating path P to j 2 (Qn� (P )) [QR do5: DisposeRigid(j)6: Alternate(P)7: PlaeRigidProposals8: end while9: HungarianUpdate10: end while11: ui  maxj f (v;�)ij3See line 3 of the de�nition of f (v;�)ij in (4.1).4See setion 2.4.5Reall that we give a modi�ation of the aution algorithm of Hohst�attler et al. (2006). Thus, the termsmodi�ed and unmodi�ed must be understood relative to their algorithm.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 18We next give the exploited algorithms PlaeRigidProposals and HungarianUpdate.Algorithm 4.2: Modi�ed Proedure PlaeRigidProposals1: do2: for all i 2 PU do3: Propose(i)4: end for5: for all j 2 QR do6: Let i� be the favourite rigid proposal in ��1 (j)7: if vj < bi�j then8: ��1 (j) := fi�g9: vj  bi�j10: end for11: while PU 6= ;Algorithm 4.3: Unmodi�ed Proedure HungarianUpdate1: �P _[ �Q BFS �G(v;�); Q2��2: ui  maxj f (v;�)ij3: � minnui � f (v;�)iz j i 2 �P , z 2 Qn �Qo4: for all j 2 �Q do5: vj  vj +�6: end forLastly, we briey explain the exploited subroutines.Alternate(P) gets an alternating path as argument and reverses the orientation of all arsalong this path. The map � is modi�ed s.t. it ontains the new bakward ars.BFS�G(v;�); Q2�� determines all nodes that are reahable from a doubly mapped worker in theaugmentation digraph G(v;�) exploiting a breadth �rst searh.DisposeRigid(j) disposes a possibly existing rigid proposal of the worker j. Thus, we unde�ne� (i), if we have a �rm i 2 ��1 (j) with (i; j) 2 R�:Propose(i) plaes a proposal from �rm i to a worker in D(v;�)i , i.e. it hooses � (i) 2 D(v;�)i .If there is a rigid proposal possible, then it is favoured over exible proposals, i.e. if thereexists a worker j 2 D(v;�)i with (i; j) 2 R�, then i rigidly proposes to suh a j.4.3 Corretness of the Modi�ed Aution AlgorithmBefore proving the orretness of the modi�ed aution algorithm 4.1, we want to develop someintuition by ommenting on what the algorithm mainly does. The map � always de�nes stablerelations but it is not neessarily injetive. During the algorithm we will inrease j� (P )j until themap beomes injetive. The proedure to inrease j� (P )j works on the augmentation digraphG(v;�). In the beginning of the algorithm 4.1 we set the payo� of all workers at zero. Moreover,we hoose a map � s.t. � (i) 2 D(v;�)i for all i 2 P .6 For all rigidly mapped workers we6Note that this is possible, sine the set D(v;�)i is nonempty for all i 2 P .



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 19hoose the best rigid proposal, dispose all other proposals in the �rst plae and set the workers'payo� aordingly. Thus, there an be �rms that are temporarily unmapped. Suh �rms keepproposing until every �rm is mapped. However, disposed rigid proposals will never be proposedagain. In ontrast to this, disposed exible proposals might be proposed again in ase theyare still optimal for the proposing �rm after the inrease in the workers' payo�. Hene, thispart of the algorithm is analoguous to the famous \men-propose-women-dispose" algorithm ofGale and Shapley (1962) what onerns rigid edges7: Every worker with more than one rigidproposal hooses the best one and disposes all others. Taken together, we ensure that there isno unmapped �rm, that every worker has at most one rigid proposal (the best rigid proposal),that the workers' payo� is updated aordingly and that still optimal exible proposals arekept. The algorithm then searhes for alternating paths in the augmentation digraph that leadto an unmapped or a rigidly mapped worker. If there is an alternating path to an unmappedworker, then we are able to subsequently inrease the size of the mapping image. If there is analternating path to a rigidly mapped worker, then we an dispose a rigid proposal (that willnever be proposed again) without dereasing the size of the mapping image. Finally, if there isno alternating path to an unmapped or a rigidly mapped worker, then the payo� of the workerswhih are reahable in G(v;�) from the set Q2� are inreased by �. This leads to at least onenew ar in the augmentation digraph. We repeat this proedure until we obtain a path in theaugmentation digraph G(v;�) as desired. The algorithm �nally terminates as soon as there is nodoubly mapped worker anymore, whih means that the map � has beome injetive.The following lemma will be exploited in the orretness proof.Lemma 4.4We onsider the modi�ed aution algorithm 4.1 in the DE market model. Then the followingstatements hold.(i) The proedure PlaeRigidProposals never dereases j� (P )j.(ii) The payo� vetor v inreases monotonially.(iii) A disposed rigid proposal will never be proposed again.Proof:(i) Let us prove the �rst statement. There is only one plae where the proedure Plae-RigidProposals ould derease j� (P )j: Line 8. In line 8 the size of the mapping imageremains the same beause we dispose all proposals exept for the best rigid proposal to aworker in QR.(ii) We next show that the seond statement holds. Initially, the workers' bene�t is set atzero. There are only two plaes in the entire algorithm where the payo� vetor v hanges.First, we disuss line 9 of the proedure PlaeRigidProposals. Here, we set the payo�of newly rigidly mapped workers. A rigid proposal (i; j) however, an only be made ifvj < bij beause j must be a favourite partner of i, i.e. j 2 D(v;�)i . Thus, setting vj = bij7We will see this more learly later in example 4.7 where we solve an instane of the marriage problem.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 20stritly inreases the worker's bene�t. The seond and last plae is line 5 in the proedureHungarianUpdatewhere we stritly inrease v, as � an be shown to be stritly positive.(iii) Finally, we prove the last statement. We note that the proedure PlaeRigidProposalsensures that we have vj = bij for all rigid proposals (i; j). Obviously, an unmapped rigidedge (i; j) an only beome a rigid proposal if it is in the augmentation digraph, whihmeans that we must have vj < bij. This however, annot happen if the rigid edge (i; j)has already been proposed, sine vj inreases monotonially aording to part (ii).We are now ready to disuss the orretness of the modi�ed aution algorithm 4.1.Theorem 4.5 (Corretness of the Modified Aution Algorithm 4.1)The modi�ed aution algorithm 4.1 produes a stable outome in the DE market model.Proof:a) In all iterations of the inner while loop the modi�ed aution algorithm 4.1 either inreasesj� (P )j or disposes a rigid proposal. This an be seen from the following two ases.1. If there is an alternating path P to an unmapped worker j (augmenting path), thenDisposeRigid(j) trivially does not hange anything. Afterwards, the subroutineAl-ternate(P) inreases j� (P )j. Moreover, Alternate(P) possibly transforms somerigid forward ars into rigid proposals. Finally, the proedure PlaeRigidPropos-als gets alled. This proedure might set some rigidly mapped workers' bene�t andtherefore perform some other steps, too. However, we know from part (i) of lemma 4.4that it never dereases j� (P )j, whih means that size of mapping image has inreasedafter the run of the inner while loop.2. If there is an alternating path P to a worker j in QR, then DisposeRigid(j) re-moves the urrent rigid proposal (i; j) of j where i 2 ��1 (j) and (i; j) 2 R�. Thisdisposed rigid edge will never be proposed again aording to part (iii) of lemma 4.4.Afterwards, the proedures Alternate(P) and PlaeRigidProposals get alled.Alternate(P) leaves j� (P )j unhanged for obvious reasons. Lastly, we know frompart (i) of lemma 4.4 that PlaeRigidProposals never dereases j� (P )j. Takentogether, we dispose a rigid proposal without hanging j� (P )j in this ase.b) If there is no alternating path P to a worker j 2 (Qn� (P ))[QR, then the proedure Hun-garianUpdate is alled. We will �rst show that eah all of HungarianUpdate leads toa new ar in the augmentation digraph. In the proedureHungarianUpdate we begin bydetermining the set of �rms �P and of workers �Q; whih are reahable from the set of doublymapped workers in the augmentation digraph. Thus, there is an alternating path to every�rm in �P and every worker in �Q. We therefore have ((Qn� (P )) [QR) \ �Q = ;, sine theondition of the inner while loop is not satis�ed when the proedure HungarianUpdategets alled. We then set the payo� of the �rms at the best urrently possible value andompute the quantity �. Reall that � = minnui � f (v;�)iz j i 2 �P and z 2 Qn �Qo. Let



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 21� = ui� � f (v;�)i�z� for some i� 2 �P and z� 2 Qn �Q. The last step of the proedure Hun-garianUpdate is to inrease the bene�t of all workers in �Q by �. We give the followinguseful statements.(i) If i 2 �P , then D(v;�)i � �Q.(ii) If j = � (i), then j 2 �Q if and only if i 2 �P .(iii) If j = � (i) and i 2 �P , then j =2 QR beause j 2 �Q aording to (ii).(iv) We have (i; j) 2 F � for all i 2 �P and j 2 D(v;�)i beause (i; � (i)) 2 F � aording to(iii) and beause of the de�nition of the subroutine Propose(i).It follows from (iv) that (i�; j) 2 F � for all j 2 D(v;�)i� . Note that we inrease the payo�of all workers in �Q by �, whih means that we espeially inrease the payo� of everyj 2 D(v;�)i� aording to (i). Thus, we obtain z� 2 D(v;�)i� and therefore the new forward ar(i�; z�) in the augmentation digraph as laimed in the beginning of the urrent part b).This new forward ar might lead to an alternating path to a worker j 2 (Qn� (P )) [QRin the resulting augmentation digraph or not. Clearly, the proedure HungarianUpdategets alled as long as we do not get a desired path and with eah all we obtain a newar. This proess of always obtaining a new ar in the augmentation digraph8 eventuallyprovides an alternating path to j 2 Qn� (P ) [QR. Hene, the inner while loop onditionwill �nally be satis�ed.9) Note that we know from part a) that eah run of the inner while loop of the main algorithm4.1 either inreases j� (P )j or disposes a rigid proposal. Obviously, j� (P )j an inrease atmost n times while we an dispose at most n2 rigid proposals, sine we know from part (iii)of lemma 4.4 that a disposed rigid proposal will never be proposed again. Moreover, wehave seen in part b) that it takes at most n2 alls of the proedure HungarianUpdateuntil the next run of the inner while loop. Hene, the algorithm is �nite.d) It remains to show that the modi�ed aution algorithm 4.1 produes a stable outome. Letus de�ne �ui := maxj f (v;�)ij . The payo� (�u; v) then is stable at any stage of the algorithm,sine no �rm will ever form a bloking pair. Moreover, we note that the subroutinesPropose(i) and Alternate(P) imply that j 2 D(v;�)i if j = � (i). The fat that �must be bijetive at the end of the algorithm10 and the de�nition of f (v;�)ij in (4.1) thenensure that (u; v;�) satis�es onditions (iv) and (v) of the stability de�nition 3.5 beausewe set ui := maxj f (v;�)ij in the very end of the algorithm. We next prove the individualrationality of the outome. We have v � 0, as we initially set v at zero and sine it inreasesmonotonially aording to part (ii) of lemma 4.4. We next prove that we also have u � 0.Note that the outer while loop ensures that there is at least one doubly mapped worker,when the main part of the algorithm runs. Beause jP j = jQj = n and the fat that themapping size never dereases (a one mapped worker never gets unmapped again)11, we8Obviously, we an obtain at most n2 new ars.9Note that the ondition of the outer while loop ensures that there is at least one doubly mapped worker. Thefat that eah �rm is mapped to at most one worker and jP j = jQj = n let us therefore onlude that there mustbe at least one unmapped worker.10We will show this in the very end of the proof.11See part a) of the proof.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 22an onlude that we always have an unmapped worker until the very end of the algorithm.An unmapped worker j however, is of nonnegative value for �rm i beause we have vj = 0and therefore f (v;�)ij = aij + bij � vj � 0 if (i; j) is exible and f (v;�)ij = aij � 0 if (i; j)is rigid with the nonnegativity of the matries a and b. This learly holds for all �rms.Finally, we note that we set ui := maxj f (v;�)ij in the very end of the algorithm. Thus, wehave u � 0 as laimed. We know from part ) that the algorithm is �nite. The onditionof the outer while loop of the main algorithm 4.1 ensures that there are no doubly mappedworkers in the end. This and the fat that we have jP j = jQj = n imply that the map� has beome bijetive. Hene, (u; v;�) is a stable outome with de�nition 3.5, whihompletes the proof.4.4 Complexity of the Modi�ed Aution AlgorithmWe give the following theorem.Theorem 4.6 (Complexity of the Modified Aution Algorithm 4.1)The modi�ed aution algorithm 4.1 runs in O �n4� time in the DE market model.Proof:Generally, we exploit the omplexity proof of Hohst�attler et al. (2006, Theorem 1, p. 4-6)and some insights from the proof of theorem 4.5.Note that the inner while loop of the main algorithm 4.1 is exeuted at most n2+n times, sinej� (P )j inreases at most n times and beause there at most n2 rigid proposals to dispose.12 Thus,the number of exeutions of the inner while loop is inO �n2�. Moreover, eah all of the proedureHungarianUpdate adds at least one new ar to the augmentation digraph. This means thatwe must have an alternating path to a worker j 2 (Qn� (P )) [QR after at most n2 alls of thisproedure. We use a standard implementation of the proedure HungarianUpdate13, whihensures that the onseutive alls of the proedure until a desired path is found need O �n2� timein total. This inludes an update of the augmentation digraph by reusing the BFS-struturefrom the previous all and storing a minimum distane �j = minnui � f (v;�)ij j i 2 �Po froma worker j 2 Qn �Q to �P [ �Q. The quantity �j an be updated for eah worker j in O (n)time. Moreover, we have to update them eah time we add a node to �P [ �Q, whih triviallyhappens O (n) times. We an then ompute � = minj f�jg in O (n) time. After an update ofthe payo�s in line 5 of the proedure HungarianUpdate, we set �j  �j � �. This way,HungarianUpdate an be implemented to ontinue the BFS of its previous all with modi�edpayo�s. Thus, the aumulated time spent is O �n2�. Afterwards, we have found an alternatingpath to an unmapped or rigidly mapped worker, whih means that we an then inrease themapping size image or dispose a rigid proposal. Taken together, we get a omplexity of ourmodi�ed aution algorithm 4.1 of at least O �n4�. We will next prove that it will not be greater.To this end, it learly remains to show that the total omplexity of the inner while body isno greater than O �n4�. The total omplexity of the subroutines DisposeRigid(j) and Al-ternate(P) is obviously bounded by O �n2� and O �n3�, respetively. Lastly, the proedure12Reall that a disposed rigid proposal will never be proposed again.13The interested reader is referred to Galil (1986) and Hohst�attler et al. (2005) for more details.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 23that deserves more attention is PlaeRigidProposals. In the �rst all, we must make nproposals. Note that we have to �nd a favourite partner for eah �rm i 2 P . We have n �rmsand n workers and hene, the omplexity is O �n2� so far. However, the sets D(v;�)i an hangeduring the algorithm, whih means that we have to update the augmentation digraph. Note thatthe proedure PlaeRigidProposals in the inner while loop of the main algorithm 4.1 getsalled O �n2� times. Thus, we an alloate the needed O �n2� time to update the augmentationdigraph without hanging the laimed omplexity of the entire modifed aution algorithm 4.1,whih ompletes the proof.With the omplexity of the modi�ed aution algorithm 4.1 in the DE market model, we learlyget an upper bound for the omplexity in any \rule-based" market model, sine these are justspeial ases. We thus onlude that the modi�ed aution algorithm 4.1 runs in in O �n4� timein, for instane, the RB and the FB market model. This is a new result for the FB marketmodel but not for the RB market model, as the aution algorithm of Hohst�attler et al. (2006)also displays a omplexity of O �n4� in the RB market model of Eriksson and Karlander (2000).4.5 Comparison to the Algorithm of Hohst�attler et al. (2006)As previously mentioned, our algorithm 4.1 represents a modi�ation of the aution algorithmof Hohst�attler et al. (2006). Hohst�attler et al. (2006) proved that their algorithm �nds a stableoutome in the RB model. We have orreted some minor mistakes and we have modi�ed theiralgorithm s.t. it �nds a stable outome in our more general DE model. We now shortly ommenton these modi�ations.The �rst modi�ation onerns the inner while loop of the main algorithm 4.1. We additionallyintrodue the subroutine DisposeRigid(j) to dispose the rigid proposal in ase we have analternating path to a worker in QR. Furthermore, we update the �rms' bene�t in the very lastline 11 of the main algorithm 4.1, sine we want to aount for the possibility that the outerwhile loop is never exeuted.14Moreover we have hanged the subroutine Propose(i) to favour rigid proposals over exibleones. This ensures that the orretness proof works. In ontrast, we did not have to modify theproedure HungarianUpdate at all.Lastly, we have modi�ed the proedure PlaeRigidProposals. First, we de�ne it as a do-while-loop instead of a while-do-loop to ensure that its body is exeuted at least one. We makethis adjustment, as there an be workers in QR or even in Q2R when there are no unmapped�rms at all. Finally, we selet the best rigid proposal for all workers j 2 QR. If the payo� of suha worker is not updated yet, then we dispose all other proposals and onsequently adjust thepayo�. All disposed rigid proposals will never be proposed again as we have proved in part (iii)of lemma 4.4. Disposed exible proposals however, might be proposed again when we still havej 2 D(v;�)i (for (i; j) 2 F �) after the payo� inrease of vj . This will happen in the next whileloop. But this time we will not dispose the reproposed exible edges, sine we now do not enterthe if-branh. Hene, taken together, the entire modi�ed proedure PlaeRigidProposalsensures that there is no unmapped �rm and that eah worker has at most one rigid proposal, it14The marriage problem is an example where the outer while loop is never run. Another example is that eah�rm proposes to a di�erent worker in the �rst all of the proedure PlaeRigidProposals.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 24sets the payo�s of all newly rigidly mapped workers and unmaps exible proposals whih havebeome unattrative to the proposing �rm beause the bene�t vetor v has inreased.154.6 Some ExamplesWe lose the thesis by presenting three examples. In the �rst example, we want to show how ourmodi�ed aution algorithm 4.1 works in the speial ase of the marriage problem. The seondexample addresses the same issue in the speial ase of the assignment game. Finally, the thirdexample is devoted to a pure DE market setting that annot be dealt with in a RB or FB marketmodel. We demonstrate that the aution algorithm of Hohst�attler et al. (2006) breaks down inthis last example while our modi�ed aution algorithm 4.1 produes a stable outome as laimedin theorem 4.5.In all the following examples, we display all players with striped irles. Moreover, we markthe weight entries of rigid and exible edges in the matries a and b in normal and bold fae,respetively. Furthermore, we always highlight rigid edges with the letter \R" in the augmen-tation digraph and in the mapping �. Finally, we will not draw the forward ars to mappedworkers for expositional ease. Note that there would always be a forward ar (i; j) to everybakward (mapping) ar (j; i) beause we have j 2 D(v;�)i if j = � (i).Example 4.7We onsider P = fp1; p2; p3; p4; p5gQ = fq1; q2; q3; q4; q5gR� = P �Q and F � = ;We are learly redued to the marriage problem, sine we only have rigid edges. The weightmatries a and b are given below. aij q1 q2 q3 q4 q5p1 3 2 3 2 4p2 1 3 2 3 2p3 4 2 4 1 4p4 2 3 2 3 2p5 4 4 2 1 4Table 4.1: Weight matrix a in example 4.7.15We note that we have modi�ed everything exept for the lines 2 to 4 (where the unmapped �rms make theirproposals) of the proedure PlaeRigidProposals ompared to the aution algorithm of Hohst�attler et al.(2006).



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 25bij q1 q2 q3 q4 q5p1 3 2 3 3 2p2 2 3 1 2 2p3 2 1 3 2 3p4 3 3 3 2 4p5 2 3 2 1 3Table 4.2: Weight matrix b in the example 4.7.1. First step:We set the payo� of all workers at zero and all the proedure PlaeRigidProposals.We �rst ompute the potential payo�s of the �rms f (v;�)ij with (4.1) and then ompute thesets D(v;�)i using (4.3). We getf (v;�)ij q1 q2 q3 q4 q5p1 3 2 3 2 4p2 1 3 2 3 2p3 4 2 4 1 4p4 2 3 2 3 2p5 4 4 2 1 4 and D(v;�)p1 = fq5gD(v;�)p2 = fq2; q4gD(v;�)p3 = fq1; q3; q5gD(v;�)p4 = fq2; q4gD(v;�)p5 = fq1; q2; q5g :We generally adopt the rule of seleting the lowest index node in ase we have to hooseamong several.16 Hene, we have the map � = f1! 5; 2! 2; 3! 1; 4! 2; 5! 1g. Wethen get QR = f1; 2; 5g and Q2R = f1; 2g. Note that worker 1 has a rigid proposal from�rm 3 and 5 and that we have b31 = b51 = 2. Again, we selet the lowest index node. Thus,worker 1 hooses the best rigid17 proposal (3; 1), disposes �rm 5 and we set v1 = b31 = 2(if-branh). Worker 2 also has two proposals. He hooses �rm 2, disposes �rm 4 and hene,we set v2 = b22 = 3 (if-branh). Finally, worker 5 only has one proposal of �rm 1, whihis why we set v5 = b15 = 2 (if-branh). In the next iteration, the two urrently unmapped�rms 4 and 5 propose to workers 4 and 5, respetively. Worker 4 only has one propsal andwe therefore set v4 = b44 = 2 (if-branh). Worker 5 however, has two proposals, i.e. anold proposal from �rm 1 and a new one from �rm 5. It hooses the best proposal, whihstems from �rm 5. Thus, worker 5 hooses �rm 5, disposes �rm 1 and we set v5 = b55 = 3(if-branh).18 In the next iteration, the only unmapped �rm 1 proposes to worker 1. Thisworker keeps �rm 1, disposes �rm 3 and we set v1 = b11 = 3 (if-branh). In the followingrun of the while-body, the only unmapped �rm 3 proposes to worker 3 who has beenunmapped before. We therefore set v3 = b33 = 3. The proedure PlaeRigidProposals16Stritly speaking, we should have de�ned our modi�ed aution algorithm 4.1 with the mentioned rule toensure uniqueness, sine this is a neessary harateristi of any algorithm. However, we hose not to do so forthe sake of brevity and the larity of the exposition.17Of ourse, we only have rigid proposals in the urrent instane of the marriage problem. We will therefore nolonger mention the rigidity of edges in the remainder of the urrent example.18Note that we again have 1; 2 2 QR in this iteration. However, there is nothing to do here beause all theseworkers only have one old proposal. Their payo� is already set aordingly and there is no proposal to dispose.Note that the if-branh is not exeuted this time and hene, the algorithm does not hange anything as desired.We will skip similar omments in the remainder to ease the exposition.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 26now terminates, as we do not have an unmapped �rm at the moment. Summarising, wehave� = f1! 1; 2! 2; 3! 3; 4! 4; 5! 5g D(v;�)p1 = fq1g�u = (3; 3; 4; 3; 4) D(v;�)p2 = fq2gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq3gv = (3; 3; 3; 2; 3) D(v;�)p4 = fq4gQR = f1; 2; 3; 4; 5g, Q2� = Qn� (P ) = ; D(v;�)p5 = fq5gand �gure 4.1.
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CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 27Example 4.8We onsider P = fp1; p2; p3; p4; p5gQ = fq1; q2; q3; q4; q5gR� = ; and F � = P �QWe are obviously redued to the assignment game, sine there are only exible edges. Theweight matrix a = b is given below.aij q1 q2 q3 q4 q5p1 3 2 3 2:5 3p2 1:5 3 1:5 2:5 2p3 3 1:5 3 1:5 3:5p4 2:5 3 2:5 2:5 3p5 3 3:5 2 1 2Table 4.3: Weight matrix a = b in example 4.8.1. First step:We set the payo� of all workers at zero and all the proedure PlaeRigidProposals.We �rst ompute the potential payo�s of the �rms f (v;�)ij with (4.1) and then ompute thesets D(v;�)i using (4.3). We getf (v;�)ij q1 q2 q3 q4 q5p1 6 4 6 5 6p2 3 6 3 5 4p3 6 3 6 3 7p4 5 6 5 5 6p5 6 7 4 2 4 and D(v;�)p1 = fq1; q3; q5gD(v;�)p2 = fq2gD(v;�)p3 = fq5gD(v;�)p4 = fq2; q5gD(v;�)p5 = fq2gReall that we selet the lowest index node in ase we have to hoose among several.Hene, we have the map � = f1! 1; 2! 2; 3! 5; 4! 2; 5! 2g. Trivially, we get QR =Q2R = ;, as we only have exible edges in the urrent assignment game example. Thus, theproedure PlaeRigidProposals already terminates, as we do not have an unmapped�rm at the moment. Summarising, we have� = f1! 1; 2! 2; 3! 5; 4! 2; 5! 2g D(v;�)p1 = fq1; q3; q5g�u = (6; 6; 7; 6; 7) D(v;�)p2 = fq2gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq5gv = (0; 0; 0; 0; 0) D(v;�)p4 = fq2; q5gQR = ;, Q2� = f2g and Qn� (P ) = f3; 4g D(v;�)p5 = fq2gand �gure 4.2.
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CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 293. Third step:The ondition of the outer while loop is still satis�ed with the doubly mapped worker 2.We now have several alternating paths to an unmapped worker.20 Let us onsider thealternating path P = (q2; p4; q3) to the unmapped worker 3. In the inner while loop body,we �rst have to exeute the subroutine DisposeRigid(3). This does not hange anything,as the worker 3 is unmapped. Afterwards, we alternate the path P. Note that this stepinreases the size of the mapping image as desired. Finally, the proedure PlaeRigid-Proposals gets alled. However, nothing happens here, sine there is trivially no rigidlymapped worker and beause there is no unmapped �rm at the moment. Summarising, wenow have� = f1! 1; 2! 2; 3! 5; 4! 3; 5! 2g D(v;�)p1 = fq1; q3g�u = (6; 5; 6; 5; 6) D(v;�)p2 = fq2; q4gu = (6; 6; 7; 6; 7) D(v;�)p3 = fq1; q3; q5gv = (0; 1; 0; 0; 1) D(v;�)p4 = fq1; q2; q3; q4; q5gQR = ;, Q2� = f2g and Qn� (P ) = f4g D(v;�)p5 = fq1; q2gand �gure 4.4.
p 1

p 2

p 3

p 4

p 5

q 1

q 2

q 3

q 4

q 5

p 1

p 2

p 3

p 4

p 5

q 1

q 2

q 3

q 4

q 5Figure 4.4: Third step in example 4.8.4. Fourth step:We next onsider the alternating path P = (q2; p2; q4) to the unmapped worker 4. In theinner while loop body, we �rst have to exeute the subroutine DisposeRigid(4). Thisdoes not hange anything, as the worker 4 is unmapped. Afterwards, we alternate thepath P. Note that this step inreases the size of the mapping image as desired. Finally,the proedure PlaeRigidProposals gets alled. However, nothing happens here, sinethere is trivially no rigidly mapped worker and beause there is no unmapped �rm at themoment. Summarising, we now have20We ould generally adopt the rule of seleting the very �rst path found in ase we have to hoose amongseveral paths to ensure the uniqueness of the algorithm. Again, we hose not to inlude this in the de�nition ofour modi�ed aution algorithm 4.1 for the sake of brevity and the larity of the exposition.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 30� = f1! 1; 2! 4; 3! 5; 4! 3; 5! 2g D(v;�)p1 = fq1; q3g�u = (6; 5; 6; 5; 6) D(v;�)p2 = fq2; q4gu = (6; 6; 7; 6; 7) D(v;�)p3 = fq1; q3; q5gv = (0; 1; 0; 0; 1) D(v;�)p4 = fq1; q2; q3; q4; q5gQR = Q2� = Qn� (P ) = ; D(v;�)p5 = fq1; q2gand �gure 4.5.
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q 5Figure 4.5: Fourth step in example 4.8.5. Fifth step:The ondition of the inner while loop is no longer satis�ed, sine there is no doublymapped worker anymore and therefore no alternating path at all. Thus, we have to runthe proedure HungarianUpdate now. We trivially obtain �P = �Q = ; beause Q2� = ;.We then set u1 = 6, u2 = 5, u3 = 6, u4 = 5 and u5 = 6. This already ompletes theproedure HungarianUpdate. Note that the algorithm now leaves the outer while loopbeause there is no doubly mapped worker anymore. Lastly, line 11 of the main algorithm4.1 brings no further hange. Hene, the algorithm terminates and we have thereforereahed a stable outome (u; v;�) with� = f1! 1; 2! 4; 3! 5; 4! 3; 5! 2g�u = (6; 5; 6; 5; 6)u = (6; 5; 6; 5; 6)v = (0; 1; 0; 0; 1)The reader should onvine himself that the above is really a stable outome.21 We note thatour modi�ed aution algorithm 4.1 essentially redues to the famous Hungarian method of Kuhn(1955) in the speial ase of the assignment game.21See de�nition 3.5 of a stable payo� and outome in the DE model or alternatively, the stability de�nition 3.3in the assignment game.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 31Example 4.9This last example adresses a pure DE market setting that annot be dealt with in a RB or FBmarket model. We demonstrate with this example that the aution algorithm of Hohst�attleret al. (2006) leads to an endless loop while our modi�ed aution algorithm 4.1 produes a stableoutome as laimed in theorem 4.5.We onsiderP = fp1; p2; p3; p4; p5gQ = fq1; q2; q3; q4; q5gR� = ( (1; 1) ; (1; 3) ; (1; 4) ; (1; 5) ; (2; 2) ; (2; 4) ; (2; 5) ;(3; 1) ; (3; 3) ; (3; 5) ; (4; 2) ; (4; 3) ; (4; 4) ; (5; 1) ; (5; 2) )F � = f(1; 2) ; (2; 1) ; (2; 3) ; (3; 2) ; (3; 4) ; (4; 1) ; (4; 5) ; (5; 3) ; (5; 4) ; (5; 5)gThe weight matries a and b are given below. Reall that we mark the weight entries of rigidand exible edges in normal and bold fae, respetively.aij q1 q2 q3 q4 q5p1 3 2 3 2 4p2 1 3 2 3 2p3 4 2 4 1 4p4 2 3 4 3 2p5 4 4 4 1 4Table 4.4: Weight matrix a in example 4.9.bij q1 q2 q3 q4 q5p1 3 2 3 3 1p2 2 3 1 2 2p3 2 1 3 2 3p4 2 3 1 2 2p5 2 3 3 1 3Table 4.5: Weight matrix b in the example 4.9.We next show that the above is a pure DE market setting that annot be dealt with in theRB and the FB market model. Let us �rst show that the example annot be desribed withthe RB market model. Note that the exibility of the edge (2; 1) implies that p2; q1 2 F , sinean edge is only exible in the RB model if both players involved are exible. The rigidity ofthe edge (1; 1) then implies that p1 is rigid. This however, means that the edge (1; 2) annotbe exible as we de�ned it in the urrent pure DE market example. Finally, we show that weannot aount for the above example within the FB market model. To this end we note thatthe rigidity of the edge (1; 1) implies that p1; q1 2 R, sine an edge is only rigid in the FB modelif both players involved are rigid. The exibility of the edge (1; 2) then implies that q2 is exible.This however, means that the edge (2; 2) annot be rigid as we de�ned it in the urrent pureDE market setting.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 321. First step: Idential results for both algorithmsWe set the payo� of all workers at zero and all the proedure PlaeRigidProposals.22We �rst ompute the potential payo�s of the �rms f (v;�)ij with (4.1) and then ompute thesets D(v;�)i using (4.3). We getf (v;�)ij q1 q2 q3 q4 q5p1 3 4 3 2 4p2 3 3 3 3 2p3 4 3 4 3 4p4 4 3 4 3 4p5 4 4 7 2 7 and D(v;�)p1 = fq2; q5gD(v;�)p2 = fq1; q2; q3; q4gD(v;�)p3 = fq1; q3; q5gD(v;�)p4 = fq1; q3; q5gD(v;�)p5 = fq3; q5gNote that we favour rigid proposals over exible ones in the proedure Propose(i). Hene,we have the map � = f1! 5; 2! 2; 3! 1; 4! 3; 5! 3g. We then get QR = f1; 2; 3; 5g.The workers 1, 2 and 5 all have only one proposal, i.e. a rigid proposal. Thus, they do notdispose any �rm and we have to set v1 = b31 = 2, v2 = b22 = 3 and v5 = b15 = 1 (always theif-branh). Finally, the best rigid proposal of worker 3 stems from �rm 4. Hene, worker3 hooses �rm 4, disposes �rm 5 and we set v3 = b43 = 1 (if-branh). In the next iterationof the do-while-loop, the unmapped �rm 5 again exibly proposes to worker 3. The bestrigid proposal of worker 3 still stems from �rm 4 (the only rigid proposal). However, wehave already updated the payo� of worker 3 aordingly in the previous iteration. Hene,we now do not exeute the if-branh and therefore nothing happens. Note that this isexatly what we want our algorithm to do. A exible proposal should be kept if it is stilloptimal for the proposing �rm after some inrease in the orresponding worker's bene�t.23The proedure PlaeRigidProposals now terminates, as we do not have an unmapped�rm at the moment. Summarising, we have� = f1! 5; 2! 2; 3! 1; 4! 3; 5! 3g D(v;�)p1 = fq5g�u = (4; 3; 4; 4; 6) D(v;�)p2 = fq2; q4gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq1; q3; q5gv = (2; 3; 1; 0; 1) D(v;�)p4 = fq3gQR = f1; 2; 3; 5g, Q2� = f3g and Qn� (P ) = f4g D(v;�)p5 = fq3; q5gand �gure 4.6.22For expositional ease, we exploit the proedure PlaeRigidProposals of our modi�ed aution algorithm4.1 in this �rst step. A orreted version of the proedure PlaeRigidProposals of the aution algorithm ofHohst�attler et al. (2006) however, would lead to the same results.23Note that we still have 1; 2; 5 2 QR in this iteration besides the disussed worker 3 2 QR. However, thisdoes not hange anything beause all these workers only have one proposal and sine we have already updatedtheir payo�s in the previous iteration. Thus, we would not arry out the if-branh and therefore nothing wouldhappen. We will skip similar omments in the remainder to ease the exposition.
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Figure 4.6: First step in example 4.9.2. Seond step with the aution algorithm of Hohst�attler et al. (2006):The ondition of the outer while loop is satis�ed with the doubly mapped worker 3. Weonsider the alternating path P = (q3; p5; q5) to the worker 5 2 QR, whih means that wehave to exeute the body of the inner while loop. Note that we annot reah an unmappedworker with an alternating path (no augmenting path) and that worker 5 is the only rigidlymapped worker that an be reahed with an alternating path. Moreover, there is no otheralternating path to the worker 5. In the aution algorithm of Hohst�attler et al. (2006)we �rst exeute the proedure Alternate(P). This path alternating however, does notdispose a rigid proposal as desired. Neither does it lead to a worker in Q2R. Afterwards,the proedure PlaeRigidProposals gets alled. This proedure however, does nothange anything. Summarising, we now have� = f1! 5; 2! 2; 3! 1; 4! 3; 5! 5g D(v;�)p1 = fq5g�u = (4; 3; 4; 4; 6) D(v;�)p2 = fq2; q4gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq1; q3; q5gv = (2; 3; 1; 0; 1) D(v;�)p4 = fq3gQR = f1; 2; 3; 5g, Q2� = f5g and Qn� (P ) = f4g D(v;�)p5 = fq3; q5gand �gure 4.7.
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Figure 4.7: Seond step with the aution algorithm of Hohst�attler et al. (2006) in example 4.9.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 343. Third step with the aution algorithm of Hohst�attler et al. (2006):We onsider the alternating path P = (q5; p5; q3) to the worker 3 2 QR. Note that thisworker is the only rigidly mapped worker that an be reahed by an alternating path andthat the path P is the only path available. Furthermore, we do not have an alternatingpath to an unmapped worker (no augmenting path). Thus, we arry out the body of theinner while loop. In the aution algorithm of Hohst�attler et al. (2006) we �rst have torun the proedure Alternate(P). Note that this path alternating does not dispose arigid proposal nor does it lead to a worker in Q2R as desired. Afterwards, the proedurePlaeRigidProposals gets alled. This proedure however, does not hange anything.As an be seen from �gure 4.8, we are exatly bak to the situation in the beginning of theseond step. Moreover, we note that we have never had any hoie.24 Thus, the autionalgorithm of Hohst�attler et al. (2006) neessarily leads to an endless loop.
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Figure 4.8: Third step with the aution algorithm of Hohst�attler et al. (2006) in example 4.9.Now, we study how our modi�ed aution algorithm 4.1 proeeds after the �rst step.252.' Seond step with the modi�ed aution algorithm 4.1:The ondition of the outer while loop is satis�ed with the doubly mapped worker 3. Weonsider the alternating path P = (q3; p5; q5) to the worker 5 2 QR, whih means thatwe have to exeute the body of the inner while loop. Note that we annot reah anunmapped worker with an alternating path (no augmenting path) and that worker 5 isthe only rigidly mapped worker that an be reahed with an alternating path. Moreover,there is no other alternating path to the worker 5. As we have shown before the autionalgorithm of Hohst�attler et al. (2006) would now lead to an endless loop. Let us seehow the new aution algorithm 4.1 works at this stage. We �rst have to exeute theadditional proedure DisposeRigid(5), whih removes the rigid proposal (1; 5) as desired.Afterwards, the proedure Alternate(P) gets alled. This path alternating ensures thatthe size of the mapping image remains the same as an be seen from �gure 4.9.24Stritly speaking, this statement is redundant, as uniqueness is a neessary harateristi of any algorithm.However, one ould imagine appropriate rules that pik one option should there be several. From this perspetive,it is important that we showed that we never had a hoie, sine this means that the enountered endless loop inthe aution algorithm of Hohst�attler et al. (2006) annot be remedied by any rules.25Again, we ould show that the �rst step leads to the same results with both algorithms. We omit to provethis for the sake of brevity.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 35
p 1

p 2

p 3

p 4

p 5

q 1

q 2

q 3

q 4

q 5

R

RR
R

R

R
R

p 1

p 2

p 3

p 4

p 5

q 1

q 2

q 3

q 4

q 5

R

RR
R

R

R
R

Figure 4.9: Intermediate result in the seond step with the modi�ed aution algorithm 4.1 inexample 4.9.Finally, we have to run the proedure PlaeRigidProposals. The urrently unmapped�rm 1 then rigidly proposes to worker 1. Worker 1 hooses �rm 1, disposes �rm 3 and weset v1 = b11 = 3 (if-branh). In the next iteration the unmapped �rm 3 rigidly proposes toworker 3. The best rigid proposal of worker 3 stems from �rm 3. Thus, we unmap �rm 4and set v3 = b33 = 3 (if-branh). Now, the only unmapped �rm 4 rigidly proposes to worker4. Worker 4 does not have any other proposals. Hene, we do not dispose any proposalsand set v4 = b44 = 2 (if-branh). This terminates the proedure PlaeRigidProposals,sine there are no unmapped �rms anymore. Summarising, we now have� = f1! 1; 2! 2; 3! 3; 4! 4; 5! 5g D(v;�)p1 = fq1g�u = (3; 3; 4; 3; 6) D(v;�)p2 = fq2gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq3; q5gv = (3; 3; 3; 2; 1) D(v;�)p4 = fq4; q5gQR = f1; 2; 3; 4g, Q2� = Qn� (P ) = ; D(v;�)p5 = fq5gand �gure 4.10.
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Figure 4.10: Seond step with the modi�ed aution algorithm 4.1 in example 4.9.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 363.' Third step with the modi�ed aution algorithm 4.1:Note that we do not have a doubly mapped worker and therefore no alternating path atall. Hene, the ondition of the inner while loop is no longer satis�ed and we have to arryout the proedure HungarianUpdate. Beause Q2� = ; we trivially get �P = �Q = ;.We set u1 = 3, u2 = 3, u3 = 4, u4 = 3 and u5 = 6. This already ompletes the proedureHungarianUpdate. Moreover, we leave the outer while loop beause there is no doublymapped worker anymore. Lastly, line 11 of the main algorithm 4.1 brings no furtherhange. Thus, the algorithm terminates and we have found a stable outome (u; v;�) with� = f1! 1; 2! 2; 3! 3; 4! 4; 5! 5g�u = (3; 3; 4; 3; 6)u = (3; 3; 4; 3; 6)v = (3; 3; 3; 2; 1)The reader should onvine himself that the above is really a stable outome.26 Note thatthe above example adressed a pure DE market setting that annot be dealt with in a RB or FBmarket model. It is therefore no surprise that the aution algorithm of Hohst�attler et al. (2006)did not work here, as this algorithm is designed for RB markets. The example therefore showedthe neessity of modifying the aution algorithm of Hohst�attler et al. (2006). Finally, this lastexample demonstrated that our modi�ed aution algorithm 4.1 produed a stable outome aslaimed in theorem 4.5.

26See de�nition 3.5 of a stable payo� and outome in the DE model.
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