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Abstract

The present Bachelor thesis deals with mixed matching markets. In the famous mixed matching
market model of Eriksson and Karlander (2000) the characteristic of the two players involved in
a contract determines the rigidity or flexibility of the contract. We give a further generalisation
by introducing a model where the characteristic of the edges between any two players decides
whether the contract is rigid or flexible. We therefore call it the decisive edges (DE) market
model and show that it contains - among other models - the model of Eriksson and Karlander
(2000) as a special case. Hochstattler et al. (2006) developed a polynomial auction algorithm for
the mixed matching market model of Eriksson and Karlander (2000). We modify their algorithm
to prove the existence of a stable outcome in our more general DE model. Finally, we show that

our modified auction algorithm runs in O (n4) time.
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Notation

Uppercase Letters

A, Alvn) set of arcs, set of arcs in the augmentation digraph G(vit)

C positive constant

Dl(v%u) set of favourite workers of firm i

E set of edges

F, F* set of flexible nodes, set of flexible edges

G, Gp, G graph, digraph, augmentation digraph

M, M’ matchings

M, sn set of (n X n)-matrices

P, P, Py set of firms, special set of firms, set of unmapped firms

Q, Q, Q2 set of workers, special set of workers, set of doubly mapped workers
Qr set of rigidly mapped workers

Q2R set of workers with at least two rigid proposals

R, R* set of rigid nodes, set of rigid edges

S, Sp, Sg coalition, P-agents in the coalition S, (Q-agents in the coalition S
v set of nodes

Lowercase Letters

a, b weight (productivity) matrices

e edge

fi(jv;”) benefit of firm ¢ from a collaboration with worker j
g, h real-valued functions

i, ] index for firms (P-agents), index for workers (Q-agents)
k, 1 indices

m, ng, T natural numbers

n number of firms, number of workers

P, q firm, worker

8 Y, 2 start node; nodes

t natural number or zero: ¢ = min {|Sp|. [Sg|}

u, U payoff vector of firms, virtual payoff vector of firms
v payoff vector of workers

T, Tjj assignment matrix, primal variable

vi



NOTATION

Uppercase Greek Letters

A, A special quantities

Lowercase Greek Letters

o, Q4 weight function, weight
A(S) worth of coalition §
7 mapping

Calligraphic Letters

O (n") polynomial complexity time
P path
Abbreviations
BFS breadth first search
DE decisive edges
DLP dual linear program
FB flexibility bias
i.e. in example
PLP primal linear program
RB rigidity bias
s.t. such that
w.l.o.g. without loss of generality

w.r.t. with respect to

vil



Chapter 1

Introduction

The theory of matching is an unusual blend of disciplines. Over the past years game theory,
economics, computer science and combinatorial optimisation contributed to the theory. We
will concentrate on two-sided matching in this Bachelor thesis. The probably most prominent
example for two-sided matching is the labour market. Clearly, any agent in the labour market
is either a firm or a worker, which explains why we call such a market two-sided or bipartite.
Thus, we consider the finite and disjoint sets of firms P and workers () in the labour market.
We would like to mention that this is in contrast to product markets, where the same agent can

I Obviously, the sellers and buyers are not two disjoint subsets

act as a seller and as a buyer.
of the set of all agents in product markets. Hence, product markets are not two-sided. Finally,
we use the term one-to-one matching or simply matching, since we will study the setting

where a firm hires exactly one worker and where all workers will work for one firm only.?

There are two fundamental models for two-sided matching markets: The marriage model
of Gale and Shapley (1962) and the assignment game of Shapley and Shubik (1972). In
the marriage model, we consider the set of men and women who are eligible to marriage in
some small village. Each individual has a preference list of his/her® acceptable partners. The
problem is to find a marriage s.t. there is no pair (i, j), where both, man 7 and woman j, are
not matched but prefer each other over their current partners. Such a marriage will be called
stable. Gale and Shapley (1962) proved the existence of a stable marriage with their famous
“men-propose-women-dispose” algorithm in the case where preference lists are strict.

In the assignment game, we attach a money value to each edge and call it the edge’s weight.
Clearly, money is a continuous variable and hence, the market will be continuous. In the labour
market, this money value attached to any edge connecting a firm ¢ with a worker j can be thought
of as the total productivity that installs if worker 4 is employed by firm j. This productivity
can be freely transferred between the agents.* The possibility of monetary transfers makes the

assignment game flexible compared to the rigid marriage problem. A solution of an assignment

!Imagine an agent who acts as a seller if the price is sufficiently high. For low enough prices the same agent

is likely to act as a buyer.
2For a highly educated worker applying for a high position in a firm such a setting is very realistic. For

example, we could study the matching of firms and chief financial officers. On the other hand, if we study low

level jobs, then we should allow that a firm hires several workers for the same job instead.
3For the sake of brevity we omit any female forms if possible in the remainder of the thesis.
*In the current example of the labour market, the productivity can be transferred through the wage the worker

receives.
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game consists of a matching of firms with workers® and an allocation of the corresponding
weight and will be called an outcome. If no pair receives less than the weight of its connecting
edge, then we call the solution a stable outcome. Technically speaking, the assignment game
amounts to the determination of a maximally weighted matching in the bipartite graph of
firms and workers. Shapley and Shubik (1972) showed the existence of stable outcomes via
duality arguments of linear programming. The classic algorithm for weighted bipartite graphs

is undisputably Kuhn’s Hungarian method®.

The practical relevance of both models is immense. For instance, let us consider some new
graduates in mathematics. They have the discrete choice of entering either the public or the
private labour market. To be more specific, they can become a teacher of mathematics at
some high school or they can work in the risk department of some insurance company. If a
graduate decides to become a teacher, then his salary will be fixed. This part of the market is
appropriately described with the marriage model. On the other hand, if a graduate chooses to
work for an insurance company, then his salary will no longer be fixed. Instead, the graduate
and the company will contract on the salary among other job characteristics. This part of
the market can be appropriately modelled with the assignment game, which allows monetary
transfers. Taken together, it is clearly tempting to study the entire market - the private and
the public labour market - simultaneously within a single model. We will refer to such models,
which contain rigid as well as flexible aspects, as mixed matching markets.

We would like to give a historical remark that highlights the practical relevance of matching
theory.” The American Hospital Association and the Association of American Medical Colleges
agreed in 1951 to use a central algorithm to match medical students with medical interns of
hospitals. For a liberal country like the United States, this seems to be quite remarkable. The
agreement to use a central matching was caused by a disastrous market situation. The number
of positions for interns was greater than the number of medical students applying for such
positions. The resulting considerable competition among hospitals manifested itself in the fact
that hospitals attempted to finalise binding agreements with student earlier than their principal
competitors. This led to a costly and inefficient market situation: Hospitals did not know
the final grades of their appointed students while the students and the medical schools found
that schooling was disrupted by the tedious process of seeking desirable interns. The central
matching algorithm® was implemented as a voluntary procedure. Students and hospitals were
free to arrange their matches outside of the system. Despite this voluntariness, the participation

rates initially exceeded 95 percent.

The marriage problem and the assignment game lead to very similar results: Equality of the
core and the set of stable outcomes as well as the lattice structure of the core. Thus, it is not
very surprising that Roth and Sotomayor (1996) asked for an explanation of these similarities in
the two mentioned models. Eriksson and Karlander (2000) addressed the challenge of Roth and

Sotomayor (1996) by presenting a mixed matching market model® that contains the marriage

5To be more general: A matching of P-agents with Q-agents.

fSee the origin work of Kuhn (1955) or the more recent treatment of Frank (2004).

"See Roth (1984), Roth (1991) or the comprehensive treatment of two-sided matching of Roth and Sotomayor
(1999) for a thorough examination.

81t was called NIMP: National Intern Matching Program.

9The so-called RiFle (RigidFlexible) assignment game.
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problem and the assignment game as special cases. They allow for rigid and flexible players
in their model and define an edge to be rigid if at least one of the players involved is rigid.
Eriksson and Karlander (2000) finally provided a pseudo-polynomial auction algorithm to prove
the existence of stable outcomes in their mixed matching market model. Based on the ideas
of Eriksson and Karlander (2000), Hochstéttler et al. (2006) constructed a polynomial auction
algorithm and proved that it runs in O (n4) time where 2n denotes the number of players.
Their auction algorithm will serve as a benchmark for our work. Parallel to this branch of
the literature, Sotomayor (2000) also showed that there is always a stable outcome in a mixed
matching market model which is very similar to the model of Eriksson and Karlander (2000).
Finally, Hochstattler et al. (2005) derived another polynomial algorithm from the key lemmas
of Sotomayor (2000) and showed that this algorithm also runs in O (n?) time. In this thesis we
give a further generalisation of the mixed matching market model of Eriksson and Karlander
(2000). In contrast to the model of Eriksson and Karlander (2000), we define the rigidity or
flexibility of any edge to be independent of the players involved. We call the resulting market
the decisive edges (DE) market model and show the usefulness of such a generalisation. We
introduce a modification of the auction algorithm of Hochstéttler et al. (2006) and exploit it to
prove the existence of a stable outcome in our general DE model. Furthermore, we show that
our modified auction algorithm runs in O (n4) time, too. Lastly, we would like to mention the
interesting matching market model of Fujishige and Tamura (2004). They generalise the mixed
matching market of Eriksson and Karlander (2000) by modelling the preferences of agents on
each side over the agents on the other side with concave utility functions. However, our model

is not contained in theirs and vice versa.

The thesis is structured as follows. First, we present some basic mathematical concepts that
will help the reader to understand the remainder of the thesis. Chapter 3 then presents different
matching market models. We begin with two famous special cases: The assignment game and
the marriage model. These two models are contained in the mixed matching market model of
Eriksson and Karlander (2000). Afterwards, we give a further useful generalisation: The decisive
edges (DE) market model. We will show that the model of Eriksson and Karlander (2000) and
many other models are simply special cases of this DE model, which will be studied in the
remainder of the thesis. In chapter 4 we introduce a modification of the auction algorithm
of Hochstattler et al. (2006). We then perform the main task of the thesis: We exploit the
mentioned modified auction algorithm to give a constructive proof of the existence of a stable
outcome in our general DE market model. Besides the correctness of the modified auction
algorithm, we establish the result that it runs in O (n4) time. Lastly, we close the thesis by
giving some concrete examples and a comparison to the auction algorithm of Hochstattler et al.

(2006).



Chapter 2

Mathematical Preliminaries

In this chapter we introduce the mathematical concepts that will be exploited in the remainder
of the thesis. For the sake of brevity, we will customise these preliminaries to our future needs.

For a more general and more thorough treatment we refer the interested reader to Ahuja et al.
(1993), Hochstattler (1999), Jungnickel (2005) and Aigner (2006).

2.1 Some Concepts in Graph Theory

We first give the definition of a digraph and a graph, respectively.

DEFINITION: 2.1 (DIGRAPH AND GRAPH) Let V and A denote a finite set of nodes (ver-
tices) and a finite set of arcs, respectively. We denote an arc by the ordered pair (z1,z2) with
21,22 € V where z; and 2z represent the head and tail node, respectively. We call the tuple
Gp = (V. A) a directed graph or simply a digraph.

If the orientation of the arcs is irrelevant, then we call them edges and denote the set of all
edges with . We denote an edge by the unordered pair (z1,z9) with 21,29 € V where 2z; and
29 represent the two end nodes of the edge.! Finally, we call the tuple G = (V, E) a graph. O

With a slight abuse of notation we adopt the convention that the first entry z; of an edge
(21, 29) denotes a firm while the second entry z; represents a worker. We will need the following

definitions to describe a matching.

DEFINITION: 2.2 (INCIDENT NODES AND EDGES) We consider the graph G = (V, E). A
node z € V is called incident to an edge e = (z1,29) € F if z = 21 or z = z9. Finally, two edges

e1 = (y1,21) ,e2 = (Y2, 22) € E are incident if {y1, 21} N {yo, 22} # 0. O
Lastly, the concept of a path will be fundamental in our modified auction algorithm 4.1.

DEFINITION: 2.3 (PATH IN A DIGRAPH) A path P = (z1,29,...,2) in a digraph Gp =
(V, A) is a sequence of vertices z; € V s.t. (2, 2i41) € A and z; # z; for all i # j. We say that
the node z; is reachable from the node z; with the path P. O

In the remainder of the thesis, we will rule out loops and multigraphs. Instead, we will study

labour markets, where an agent is either a firm or a worker. Moreover, we want to ensure that

! A loop is an edge connecting a node to itself. Thus, we can have z; = z» in case of a loop.
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each firm can contract with each worker and vice versa. This leads to the following special case

of a graph.

DEFINITION: 2.4 (COMPLETE BIPARTITE GRAPH) A graph G = (V, E) is called bipartite
if it allows for a partition of the set of nodes V = PUQ s.t. each edge has one end node in P and
the other in (). A bipartite graph with |P| = n and |Q| = m is called complete if it satisfies
E ={(p,q) | p € P, q € Q}, which implies that we have |E| = nm. O

Note that a complete bipartite graph contains almost all the relevant aspects of the labour
market we want to study. We can define P as the set of firms and @ as the set of workers.

Clearly, these two sets are finite and disjoint in the labour market.

2.2 Matching in Complete Weighted Bipartite Graphs

As previously mentioned, we only have edges connecting a firm with a worker in complete
bipartite graphs. We now attach a money value to each edge (i,j) that can be thought of as
the total productivity that installs if a worker j is employed by a firm 7. Obviously, such a

productivity must be nonnegative.

DEFINITION: 2.5 (WEIGHTED GRAPH) A graph G = (V, E, a) is called weighted if it has
a weight function a: £ — Ry O

From now on we assume a complete weighted bipartite graph G = (V, E, o) with |P| = |Q| = n.
This assumption is innocious, since we can always introduce dummy nodes with zero weights.
We next turn to the fundamental definition of a matching. Because we are interested in the
situation where each firm wants to hire one worker and each worker can only be employed by
one firm, the matching will be one-to-one.? For the sake of brevity, we simply use the term

matching.

DEFINITION: 2.6 (MATCHING IN A WEIGHTED BIPARTITE GRAPH, WEIGHT OF A MATCH-
ING) We consider a weighted bipartite graph G = (V, E,a) with V = PUQ. A matching
M C FE is a set of pairwise non-incident edges. We call two nodes p € P and ¢ € (Q matched
with each other if (p,q) € M. Moreover, we call a node unmatched if it is not incident with
an edge of M. We define the weight of a matching M as o (M) = >  «a(e). Finally, we call M

ec M
a maximally weighted matching if o (M) > « (M) for all other matchings M'. O
We will see that the assignment game boils down to finding a maximally weighted matching

in a complete weighted bipartite graph.

>The comprehensive treatment of two-sided matching of Roth and Sotomayor (1999) also contains a chapter
on many-to-one matching. Additionally, the interested reader can also find examples of non-two-sided matching
such as the roomate problem or the man-woman-child problem. In all the mentioned problems however, we do

not necessarily have stable outcomes.
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2.3 Algorithms and Complexity

Let us give the following rather informal definition of an algorithm.

DEFINITION: 2.7 (ALGORITHM) We define an algorithm as an exact finite description of
a sequence of a finite number of steps that establish a certain goal. However, each step must be
unique and efficiently executable. Finally, the algorithm must terminate after the finite number

of steps. O

We will formulate our modified auction algorithm in pseudo-code. Moreover, we will sometimes
violate the uniqueness condition for the sake of expositional ease. However, all such violations
can easily be remedied by certain rules like selecting the node with the lowest index in case there
are several nodes to operate on at some step in the algorithm.

Besides the correctness, a major characteristic of any algorithm is its runtime behavior. We
will make use of the O-notation to give upper bounds on the complexity of our modified auction

algorithm and to compare its runtime behavior with those of other algorithms.

DEFINITION: 2.8 (COMPLEXITY, O-NOTATION) We consider the functions g : N — N and
h: N — N. We write g = O (h) if there exist C' > 0 and ng € N s.t. g (n) < Ch(n) for all
n > ng. O

Note that we have to read the equation ¢ = O (h) from the left to the right.* Moreover,
we would like to mention that if a problem can only be solved with algorithms displaying
exponential growth in their runtimes, then the problem is generally considered to be insolvable.
Thus, algorithms of interest exhibit at most polynomial runtimes®. Fortunately, we will be able

to prove that our modified auction algorithm runs in O (n4) time.

2.4 Breadth First Search

Our modified auction algorithm will exploit the breadth first search as a subroutine. We already
present this standard search method here, since we want to focus on the really relevant aspects
of the algorithm later.

The breadth first search (BFS) determines all nodes that are reachable in a given digraph
from a given start node. For this purpose, BF'S first visits all nodes that are reachable with
only one arc from the start node, marks these nodes as visited and stores them in a queue. As
soon as all such directly reachable nodes are visited, we remove a node from the queue (current
node), visit all unvisited nodes that are directly reachable from the current node and put them
on the queue. BFS continues in this manner until some termination condition is met or the
queue has become empty. The following algorithm in pseudo-code implements the breadth first
search. It must be called with BFS((Gp, s)) where Gp is some directed graph and s denotes

the start node of the search.”

#Otherwise, we could get the contradiction n = n® from n = O (n2) and n? =0 (nz)
“That is, their runtime functions must be in @ (n") for some r € N,
5Our modified auction algorithm will exploit BFS to determine all nodes that are reachable in the augmen-

tation digraph from the set of doubly mapped workers. Hence, we use some variant of the presented algorithm.
Specifically, we execute lines 3 and 4 for all doubly mapped workers. Moreover, we will not use a termination

condition and read off the reached nodes from the vector Predecessor in the very end.
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Algorithm 2.9: Breadth First Search (BFS)

1: Queue + 0
2:  Predecessor < 0
3:  Predecessor [s] < —1 <& The path begins here
4:  Queue.append (s) <& Put s on the queue
5. while Queue # () do
6: y = Queue.top () & Take y and remove it from the queue
T: for z € y.Neighbourhood do <& There is an arc from y to z
8: if Predecessor [z] =0 then
9: Predecessor [z] <y
10: if z satisfies termination condition then
11: P (sy...,2)
12: else
13: Queue.append (z)
14: end if
15: end if
16: end for
17:  end while

The next chapter will present different mixed matching market models.



Chapter 3

Matching Market Models

In this chapter we first present the assignment game of Shapley and Shubik (1972) and after-
wards the marriage model of Gale and Shapley (1962). We use general notation from the very
beginning, since these two models are special cases of the quite general mixed matching market
model of Eriksson and Karlander (2000). Finally, we introduce a further useful generalisation:
The decisive edges (DE) market model. This most general model will be exploited in the re-
mainder of the thesis. The entire chapter is devoted to develop some intuition for the presented
matching market models. We therefore do not attempt to give a thorough introduction to the

various existing models.!

As previously mentioned, we always assume w.l.o.g. that |P| = |@Q| = n. The P- and the Q-
agents will also be called the firms and the workers of a labour market, respectively. Each firm
can contract with each worker and vice versa. However, each firm is interested in hiring exactly
one worker and each worker can only be employed by one firm. Hence, the goal is to find stable
one-to-one matchings?. For the sake of brevity, we simply use the term matching from now on.
Instead of firms and workers, the reader can imagine sellers and buyers in a market where each
seller possesses one indivisible good and each buyer is interested in purchasing one such good.
The sets of sellers and buyers are finite, disjoint and denoted with P and (), respectively. We
denote a nonnegative real number (weight) «;; with each partnership (p;,q;) with i,j5 € N,.
This number can be thought of as the difference between the reservation price of the buyer and
the seller. Let us come back to our guiding example: The labour market. We then interpret «;;
as the worth of productivity when the worker g; is hired by the firm p;. For notational ease, let
7 and j be the index for firms and workers for the remainder of the thesis.

Besides V' = PUQ, we now introduce the additional partition of players V = RUF where
R and F' denote the set of rigid and flexible players, respectively. Rigid agents want a fixed
salary while flexible agents prefer to contract on the salary. Moreover, we replace the weight
function o« : E — Ry with the two productivity matrices a,b € M, ., (R;) in the sense
that® « (i,j) = aij = a;; + b;; for each edge (i,j) € E. Additionally, we define a payoff as the

'The interested reader is referred to Roth and Sotomayor (1999), Eriksson and Karlander (2000) and Jin
(2005).
2The comprehensive treatment of two-sided matching of Roth and Sotomayor (1999) contains a chapter on

many-to-one matching.
% As previously mentioned, we use general notation already here. The meaning of this notation will be explained

in section 3.3.
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pair (u,v) of the vectors u,v € R". The vectors v and v represent the benefit of the firms and

workers, respectively.

3.1 Special Case I: Assignment Game

If we set R = () in the mixed matching market model of Eriksson and Karlander (2000)*, then we
obtain the famous assignment game of Shapley and Shubik (1972). Money plays an important
role in this cooperative game. The worth of any coalition of players S is determined solely with

the best pairwise combination that the members of the coalition can form. Thus, we have

1. A(S) = 0if S contains either only P-agents or only Q-agents,
2. X(9) =a;j + b it S = (i,7) withi € P and j € Q,

3. A (S) = maX{)‘ (ilajl) + A (i27j2) + ..+ A (Z'tujt)} with {(ilujl) s (i27j2) FRRRY ('L'tujt)} - SPX
Sg where Sp and S denote the P- and ()-agents in S and where ¢ = min {|Sp|,|Sg|}.

The rules of the game allow the members of a coalition to split their worth in any way they
like. Hence, we do not only allow that monetary transfers are made between matched partners®
but we do also allow for transfers between unmatched members of a coalition.% Clearly, we must
have » ;g ui+ 3 ;cgv; = A(S). The problem is to determine A (S) for the given productivity
matrices @ and b and is called the assignment problem. Of course, we are especially interested
in computing A (PUQ), since this is the maximum total payoff available to the players of the
game.

The assignment problem is equivalent to the problem of finding a maximally weighted matching
in the complete weighted bipartite graph G = (V, E, a, b) with the productivity matrices a and b.
Fortunately, Kuhn (1955) developed the popular Hungarian method’, which finds a maximally
weighted matching in weighted bipartite graphs. The Hungarian method clearly influenced our
work, as the reader will see when we present our modified auction algorithm in section 4.2 as
well as later in example 4.8 where we solve an instance of the assignment game. We can cast

the assignment problem into the following linear program (PLP).

PROBLEM 3.1 (PRIMAL LINEAR PROGRAM) Mazimise Zij (aij + bij) - zij subject to Y, x5 <
1 forall j €N,, ijij <1 for alli €N, and x;; > 0 for all i,j € N,.

If £;; = 1, then i and j form a partnership and z;; = 0 otherwise. Clearly, >, z;; = 0 means
that ¢ is unassigned.

We next give the corresponding dual linear program (DLP).

PROBLEM 3.2 (DUAL LINEAR PROGRAM) Minimise Y, pui+)_cqvj subject tou; > 0, v; >
0 and u; +vj > a;j + b;j for all i,5 € N,.

“See section 3.3.

SThese are the obvious transfers, since a firm will pay the employed worker a certain wage.

5This assumption implies that there can also be monetary transfers between workers, for instance in a labour
union, and between firms, for instance in an employer association.

"See the origin work of Kuhn (1955) or the more recent treatment of Frank (2004).
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8 Hence,

It can be shown that there exists an integer solution to the primal linear program.
we can conclude that the above dual linear program must have an optimal solution. According
to the fundamental duality theorem of Dantzig (1963, p. 129) we therefore have identical values
for the objective functions of the PLP and the DLP, respectively. Thus, if the matrix z is an

optimal assignment and if (u,v) is a solution to the DLP, then we get

Z“i+2”7 ZZ(aij-i—bij)-.’rij ZA(PUQ). (3.1)

iepP jeqQ 1]
We highlight the fact that the pair (u,v) of the dual variables v and v corresponds to the
payoff of the game. Let us now think about the solution of the game, which we call an outcome.
According to (3.1) an outcome consists of a matching and the payoff (u,v). We next define the

stability of the payoff and the outcome.

DEFINITION: 3.3 (PAYOFF AND OUTCOME STABILITY) A payoff (u,v) is called stable if
(i) w; +vj > ai; + b;; for all edges (i,7) € P x Q.

A stable outcome (u,v; ) consists of a stable payoff (u,v) and a bijective map pu: P — Q
s.t.

(ii) u; > 0 and v; > 0 for all (¢,5) € P x Q,
(111) Ui + v = ajj +bij for all ('L,j) ePxQifj= ,u(z) O

Let us assume for the moment that we have u; + v; < a;; + b;; for some edge (7,75) € P x Q.
Obviously, firm 7 and worker j can earn more if they leave their current partners and collaborate
with each other. Such a situation cannot be stable and hence, the pair (7, j) is called a blocking
pair. We note that condition (i) in the above definition 3.3 prevents any blocking pairs, while
condition (ii) ensures individual rationality.

This is the way how Shapley and Shubik (1972) showed that the stable payoffs of the assign-
ment game (u, v) exist and that they are the solution of a dual linear program to the primal linear
program for maximally weighted bipartite matchings. Moreover, they proved the equality of the
core’ and the set of stable outcomes as well as the lattice structure of the core. Interestingly,

we will see the same results in the following marriage model.

3.2 Special Case II: Marriage Model

If we set F' = ) in the mixed matching market model of Eriksson and Karlander (2000)'°, then
we obtain the famous marriage model of Gale and Shapley (1962). We consider all men and
women eligible for marriage in some small and isolated village. Thus, we imagine the P-agents
to be the male and the Q-agents to be the female marriage candidates. Obviously, the two sets

P and Q are then finite and disjoint as postulated. Each man has a preference list'' over all

8The interest reader is referred to Dantzig (1963, p. 318).

9The core of a game is the set of undominated outcomes. Since the set of stable outcomes in the assignment
game is defined w.r.t. all kinds of coalitions, it trivially coincides with the core.

10Gee section 3.3.

"For the agents’ preferences Gale and Shapley (1962) imposed the completeness, the transitivity and the

indepence assumption. All mentioned assumptions are standard in economics.
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women and each woman has a preference list over all men. We represent these preference lists
with the matrices ¢ and b. For example, a;; > a; then means that man 4 strictly prefers woman
k to woman [. On the other hand, woman j prefers man k to man [ if by; > bj; whereas she
is indifferent between the two men if by; = b;;. If a man and a woman both consent to marry
one another, then they may proceed to do so. The problem is to find a set of marriages s.t.
there exists no pair (4, j) that prefers each other over their current partners. We next define the

stability of the payoff and the outcome.

DEFINITION: 3.4 (PAYOFF AND OUTCOME STABILITY) A payoff (u,v) is called stable if
(i) w; > a;j or v; > by for all (i,j) € P x Q.

A stable outcome (u,v;u) consists of a stable payoft (u,v) and a bijective map pu: P — @
s.t.

(ii) u; > 0 and v; > 0 for all (4,5) € P x Q,

(ili) u; = a;; and v; = by for all (4,5) € P x Q if j = p (). 0

Let us assume for the moment that we have u; < a;; and v; < b;; for some edge (4, 7) € P x Q.
Obviously, man 7 and woman 5 are then better off if they leave their current partners and marry
each other. Such a situation cannot be stable and hence, the pair (i, j) is called a blocking pair.
Note that condition (i) in the above definition 3.4 prevents any blocking pairs, while condition
(ii) ensures individual rationality. Moreover, we note that the outcome is completely determined
by the matching, since the matching implies the payoff as can be seen from condition (iii) in the
above definition 3.4.

Gale and Shapley (1962) proved with their famous “men-propose-women-dispose” algorithm'?
that there is always a stable outcome when preferences are strict. We note that the procedure
PLACERIGIDPROPOSALS of our modified auction algorithm in section 4.2 is based on the “men-
propose-women-dispose” algorithm. We will see this later in example 4.7 where we solve an
instance of the marriage problem. Finally, Gale and Shapley (1962) proved the equality of the
core'? and the set of stable outcomes as well as the lattice structure of the core. Note that we
have encountered the same results in the assignment game, too. Thus, it is not very surprising
that Roth and Sotomayor (1996) asked for an explanation of these similarities in the marriage
model and the assignment game. Eriksson and Karlander (2000) addressed the challenge of Roth
and Sotomayor (1996) by giving a mixed matching market model that contains the marriage

problem and the assignment game as special cases. The next section deals with their model.

12Roth and Vate (1990) show that there is an alternative to the “men-propose-women-dispose” algorithm. They
start with any matching and randomly select any blocking pair to derive a new matching. Roth and Vate (1990)
prove that such a random sequence of matchings converges to a stable matching. Thus, they provide a family of

alternative algorithms to reach a stable matching.
13 Again, the core of a game is the set of undominated outcomes. The difference between the set of stable

outcomes and the core in the marriage model is that the core is undominated w.r.t. all coalitions whereas the set
of stable outcomes is defined w.r.t. certain kinds of coalitions only: Single coalitions and pairs of a man and a

woman.
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3.3 Mixed Matching Model of Eriksson and Karlander (2000)

In contrast to the two previous models, Eriksson and Karlander (2000) simultaneously al-
low for rigid and flexible players. They then define the set of rigid and flexible edges R* =
{(i,j) e PxQ|i€Rorj€ R} and F* = {(i,j) e PxQ |i € F and j € F}, respectively.
Thus, they assume that a contract will be fixed if at least one of the two parties prefers a
fixed salary. Obviously, this is an arbitrary assumption. Note that we get F* UR* = P x Q. If
worker j gets employed by firm ¢ and if (¢, j) € R*, then we set u; = a;; and v; = b;;. On the
other hand, if (i, j) € F* and firm i hires worker j, then we set u; +v; = a;; + b;;. Thus, we can
interpret v; as the worker’s salary. This salary is fixed if the contract is rigid. If the contract is
flexible, then the worker’s wage is no longer fixed but it must be negotiated. Consequently, we
only postulate that the sum of the firm’s and the worker’s benefit equals the total productivity
from the collaboration in this case. Taken together, we consider the complete weighted bipartite
graph G = (V, E,a,b) with V = PUQ = RUF and the two nonnegative productivity matrices
a and b. We next give the stability definition in the mixed matching market model of Eriksson
and Karlander (2000).

DEFINITION: 3.5 (PAYOFF AND OUTCOME STABILITY) A payoff (u,v) is called stable if
the following two conditions are satisfied for every edge (i,7) € P x Q:

(i) u; +v5 2> a5 + bij if (Z,]) € F*,
(i) wu; > a;j or v; > by; if (i,7) € R*.

A stable outcome (u,v;u) consists of a stable payoff (u,v) and a bijective map pu: P — @
s.t.

(iii) u; > 0 and v; > 0 for all (i,7) € P x Q,
(iv) u; + vj = ajj + bjj if j = p (i) and (i,5) € F*,
(v) w; = ai; and vj = b if j = p (4) and (7,j) € R*. 0

Note that conditions (i) and (ii) in the above definition 3.5 prevent any blocking pairs, while
condition (iii) ensures individual rationality. Finally, conditions (iv) and (v) set the payoffs of
flexible and rigid matches. We would like to highlight the fact that the above stability definition
3.5 specialises to the stability definition 3.3 of the assignment game if we set R = () and to the
stability definition 3.4 of the marriage model in the special case of F' = (). This should not come
as a surprise, since the assignment game and the marriage model are special cases of the current
mixed matching market model of Eriksson and Karlander (2000).

Finally, Eriksson and Karlander (2000) proved with a pseudo-polynomial auction algorithm
that there always exists a stable outcome in the presented mixed matching market model. Based
on their work, Hochstéttler et al. (2006) developed a polynomial auction algorithm that runs in

(@) (n4) time. We will give a modification of their auction algorithm in section 4.2.
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3.4 Decisive Edges Market Model

We now give a useful generalisation of the previous mixed matching market model of Eriksson
and Karlander (2000). In contrast to the model of Eriksson and Karlander (2000), the nature
of any contract will not depend on the characteristics of the players involved, but it will be
determined solely by the edge that connects any two players. We recall that a contract is
flexible in the model of Eriksson and Karlander (2000) if and only if both players are flexible.
Put differently, a contract is rigid if at least one of the players is rigid. Thus, the set of rigid
and flexible edges R* and F*, respectively, are defined as

R*={(i,j)e PxQ|i€RorjeR} (3.2)

and
F*={(i,j)e PxQ|i€ Fandje€F}. (3.3)

Let us therefore refer to the model of Eriksson and Karlander (2000) as the rigidity bias
(RB) market model.

Alternatively, we could study a market where a contract is rigid if and only if both players
are rigid. Put differently, a contract is flexible if at least one of the players is flexible. Hence,
we could switch the logical operators in the definitions of R* and F* of the RB model in (3.2)
and (3.3), respectively. The resulting market model is consequently called the flexibility bias
(FB) market model. We then have

R*={(i,j)e PxQ|i€ Rand j€ R} (3.4)

and
F*={(i,j)e PxQ|i€ForjeF}. (3.5)

Regardless of whether we consider the RB or the FB market model, we clearly have strict
rules that determine the set of rigid and flexible edges R* and F*, respectively, by exploiting
the nature of the players involved. We could make up different rules for these sets and end
up with various different mixed matching market models. However, all these “rule-based”
market models are trivially special cases of the market model that uses no rule at all: The
decisive edges (DE) market model. In the DE model we do not model rigid and flexible
players. Instead, we directly define whether an edge is rigid or flexible. Moreover, we do so in
an arbitrary general way. This means that we can define the rigidity or flexibility of each edge
individually, i.e. completely independent of all other edges. Put differently, the sets of rigid and
flexible edges R* and F™*, respectively, are allowed to form an arbitrary partition of P x @) in
the DE model. However, the definition of R* and F™* is the only difference to the RB model,
which means that definition 3.5 of a stable payoff and outcome also applies to the current DE
model.'* We will fruitfully exploit the generality of the DE market model in the remainder of
the thesis: We will prove the existence of stable outcomes in the DE model. Clearly, all the
results that will be developed for the DE model carry over to the special cases, i.e. the RB and
the FB market model.

"For the same reason, definition 3.5 of course applies to the FB model and any other “rule-based” market

model, too.
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Before we move on to solve the DE model, we want to think about the rigidity and flexibility
of contracts and thereby show that the DE market model represents a useful generalisation of
the mixed matching market model of Eriksson and Karlander (2000). In the labour market,
we mainly distinguish between private firms and public organisations. Intuitively, private firms
tend to behave more flexibly compared to public organisations. On the other side of the labour
market, we mainly discern between members and non-member of labour unions'. Labour unions
give wage recommendations and some agents feel obliged to follow them while others do not.'®
Moreover, whether an agent feels more or less obliged to follow such recommendations probably
depends on the matching partner. If a private firm hires for instance a prominent member or
even a leader of a labour union, then it is very likely to follow the recommendations. In a
“rule-based” market model we can account for this situation by defining the private firm as a
flexible and the prominent labour unionist as a rigid player, respectively, and by defining an
edge as rigid if at least one of the players involved is rigid (i.e. adopting the RB model). If the
same private firm (modelled as a flexible player) contracts with a completely unknown labour
unionist (clearly a rigid player), then it is likely to contract on the salary instead of following a
fixed wage recommendation. However, using a “rule-based” market model, we had to adopt the
RB model because of the first edge. Thus, we cannot model this second edge appropriately as
flexible. In our general DE market model, we are able to model the first edge as rigid and the
second as flexible. In fact, we can define each edge independently of the players involved in the
DE model.

Let us present another situation that no “rule-based” market model can account for. We
consider two flexible workers and a firm p offering these two workers a job. The firm principally
wants to contract on the salary. This is what happens in the contract of this firm with worker
1. Moreover, let worker 2 be a real good match for the firm p. Flexibly contracting with him
however, would possibly disrupt the firm’s wage-hierarchy structure. Thus, we would like to
define the edges (p,1) and (p,2) as flexible and rigid, respectively. This is clearly not possible
with any “rule-based” market model but no problem at all for our general DE market model.

We give a last example for the shortcoming of any “rule-based” market model and hereby an
example illustrating the usefulness of our decisive edges model. Let all workers in this example
be flexible. Note that not all labour unions are equally strong. Thus, there are minimum wages
for some jobs while there are no minimum wages for others.!” Imagine that firm 1 offers a job
to worker 1 where a minimum wage applies while there is no minimum wage applying to the
job offer of firm 2 to any worker. Clearly, we will have to define firm 1 as rigid and firm 2 as
flexible in a “rule-based” market model, since we want the edges (1,1) and (2,1) to be rigid
and flexible, respectively. Moreover, we have to define an edge as rigid if at least one of the two
players involved is rigid (adopting the RB model).!® Having all this set, we cannot model the

situation where firm 1 (rigid player) offers a job to worker 2 where no minimum wage applies.'’

Y5Highly riskaverse and slightly riskaverse workers would be another distinction that leads to the same conclu-
sion.

16Note that this concerns both sides of the labour market, since a human resource chief of a certain firm can
be a member of a labour union or not.

17 Alternatively, we could imagine strong wage recommendations for some jobs and weak wage recommendations
for other jobs.

' Note that all definitions have been necessary and unique.

'9We can think of several reasons why there should not be a minimum wage applying to the edge (1,2). The
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Again, the DE market model can describe this situation appropriately, while any “rule-based”
market model like the RB or the FB market model cannot.

Besides all the mentioned economic reasons, there is of course genuine mathematical interest
for our generalisation.

The following chapter is devoted to the main task of the thesis: It presents our modified
auction algorithm and exploits it to prove that there exists a stable outcome in the general DE

market model.

job offer of firm 1 to worker 2 can be different from the one to worker 1, since worker 1 and 2 differ in capabilities,

education, physical condition, domicile, marital status, disablement and so on.



Chapter 4

Modified Auction Algorithm in the
DE Model

Eriksson and Karlander (2000) provided a pseudo-polynomial auction algorithm to prove the
existence of stable outcomes in their mixed matching market model, which we call the RB mar-
ket model. Based on the ideas of Eriksson and Karlander (2000), Hochstéttler et al. (2006)
constructed a polynomial auction algorithm and proved that it runs in O (n4) time where 2n
denotes the number of players. In this chapter we first give some necessary definitions. After-
wards, we present a modification of the auction algorithm of Hochstéittler et al. (2006). We
then establish its correctness in our general DE market model' and hereby prove the existence
of a stable outcome in the DE market model. Moreover, we show that our modified auction
algorithm runs in O (n4) time, too. Finally, we close the chapter (and thereby the thesis) by
giving concrete examples that show how our algorithm works and why our modifications to the

auction algorithm of Hochstéttler et al. (2006) are necessary.

4.1 Some Definitions

As previously mentioned, we will assume that |P| = |Q| = n, since we can always introduce
dummy nodes with zero edge weights. Let p : P — ) be a partial map and let 7 and j denote
the index for firms and workers, respectively. If y (i) = j, then we say that firm 7 proposes to
worker j. A proposal is called flexible or rigid if the corresponding edge is flexible or rigid.
Moreover, we call a firm i (a worker j) mapped if i € u~ ' (Q) (if 7 € ¢ (P)) and unmapped
otherwise. If y (i1) = u (i) = j with iy # 4, then j is called doubly mapped.? Furthermore,
we recall the definition of a payoff as a pair (u,v) with the vectors u,v € R”. Moreover, we use

the following notation:

Py set of unmapped firms
Q2p set of doubly mapped workers
Qr set of rigidly mapped workers

Q2r set of workers with at least two rigid proposals

'See section 3.4.
2Note that any multiply mapped worker is contained in this definition of a doubly mapped worker, i.e. atriply

or quadruply mapped worker etc.

16
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Furthermore, we define

a;j + bj; —wv; if (i,7) is a flexible edge

| i (55) s reid and 1y < )
] ) aij if (z,j) is rigid and vj = bij and p (Z) =7 -
0 otherwise.

Obviously, fi(jv;”) denotes the possible profit firm 4 receives from a contract with the worker
j given the workers’ payoff vector v. Note that fi(;);”) additionally depends on the mapping j.3
We define the augmentation digraph G(“#) as the directed subgraph of G with the arc set

AW = (i) |G =u(@}u{G4) 1€ D™}, (4.2)

where

pem { JEQ £5™) = max i(:;u)}_ (4.3)

Note that DEU;“) is the set of workers that maximise the potential benefit of firm ¢. Thus,
DZ(U;“ ) contains the favourite partners of the firm 7 given the current workers’ payoff v and the
current mapping p. In the augmentation digraph G(“#) we therefore have mapping backward
arcs and forward arcs that end in a favourite partner of the corresponding firm. A directed
path P in G#) that connects a doubly mapped worker j; € (9, with another worker j; is
called (u-) alternating. If j; is unmapped, then the path P is called (u-) augmenting. Lastly,
we let BF'S (G(”?“),Qgﬂ) denote a procedure that implements a breadth first search? in the
augmentation digraph G(**). It returns all nodes that are reachable in G(*#) from the set Qaop-

We are now ready to give the definition of our modified auction algorithm in the next section.

4.2 The Modified Auction Algorithm

We first present the main part of our modified auction algorithm.?

Algorithm 4.1: Modified Procedure Construction of a Stable Outcome
v <0

PLACERIGIDPROPOSALS
while ), # 0 do
while there is a p-alternating path P to j € (Q\p (P)) U Qg do
DispOSERIGID(j)
ALTERNATE(P)
PLACERIGIDPROPOSALS

end while

HUNGARIANUPDATE

,_.
e

end while

11:  w; < max; fi(;;“)

#See line 3 of the definition of fi(jv;“) in (4.1).
“See section 2.4.
Recall that we give a modification of the auction algorithm of Hochstittler et al. (2006). Thus, the terms

modified and unmodified must be understood relative to their algorithm.
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We next give the exploited algorithms PLACERIGIDPROPOSALS and HUNGARIANUPDATE.

Algorithm 4.2: Modified Procedure PLACERIGIDPROPOSALS

1: do

2: for all s € Py do

3: PROPOSE(7)

4: end for

o: for all j € Qr do

6: Let i* be the favourite rigid proposal in ! (5)
7 if v; < b;; then
8: pt () = {i*}
9: Vj bi*]‘
10: end for
11:  while Py # 0

Algorithm 4.3: Unmodified Procedure HUNGARIANUPDATE

PUQ + BFS (G, Qy,)
)

1

2:  w; ¢ max; fi(;”“
3 A(—min{ui—fi(:;“) |iEP,zEQ\Q}
4: for all j € Q do

5 vj —vj+ A

6

end for

Lastly, we briefly explain the exploited subroutines.

ALTERNATE(P) gets an alternating path as argument and reverses the orientation of all arcs

along this path. The map p is modified s.t. it contains the new backward arcs.

BFS (G(”;“), QQ#) determines all nodes that are reachable from a doubly mapped worker in the
augmentation digraph G(*#) exploiting a breadth first search.

D1sPOSERIGID(j) disposes a possibly existing rigid proposal of the worker j. Thus, we undefine
p (i), if we have a firm i € g~ ' (4) with (i,5) € R*.

(v31)

i

PROPOSE(7) places a proposal from firm i to a worker in D , Le. it chooses p (i) € DZ(WL).
If there is a rigid proposal possible, then it is favoured over flexible proposals, i.e. if there

exists a worker j € DZ(U;“) with (7,7) € R*, then i rigidly proposes to such a j.

4.3 Correctness of the Modified Auction Algorithm

Before proving the correctness of the modified auction algorithm 4.1, we want to develop some
intuition by commenting on what the algorithm mainly does. The map p always defines stable
relations but it is not necessarily injective. During the algorithm we will increase | (P)] until the
map becomes injective. The procedure to increase |u (P)| works on the augmentation digraph
G#), In the beginning of the algorithm 4.1 we set the payoff of all workers at zero. Moreover,

we choose a map p s.t. p(i) € DM for all g € P.5 For all rigidly mapped workers we

[

SNote that this is possible, since the set DEU;“) is nonempty for all i € P.
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choose the best rigid proposal, dispose all other proposals in the first place and set the workers’
payoff accordingly. Thus, there can be firms that are temporarily unmapped. Such firms keep
proposing until every firm is mapped. However, disposed rigid proposals will never be proposed
again. In contrast to this, disposed flexible proposals might be proposed again in case they
are still optimal for the proposing firm after the increase in the workers’ payoff. Hence, this
part of the algorithm is analoguous to the famous “men-propose-women-dispose” algorithm of
Gale and Shapley (1962) what concerns rigid edges’: Every worker with more than one rigid
proposal chooses the best one and disposes all others. Taken together, we ensure that there is
no unmapped firm, that every worker has at most one rigid proposal (the best rigid proposal),
that the workers’ payoff is updated accordingly and that still optimal flexible proposals are
kept. The algorithm then searches for alternating paths in the augmentation digraph that lead
to an unmapped or a rigidly mapped worker. If there is an alternating path to an unmapped
worker, then we are able to subsequently increase the size of the mapping image. If there is an
alternating path to a rigidly mapped worker, then we can dispose a rigid proposal (that will
never be proposed again) without decreasing the size of the mapping image. Finally, if there is
no alternating path to an unmapped or a rigidly mapped worker, then the payoff of the workers
which are reachable in G(“#) from the set ()2, are increased by A. This leads to at least one
new arc in the augmentation digraph. We repeat this procedure until we obtain a path in the
augmentation digraph G(#) as desired. The algorithm finally terminates as soon as there is no

doubly mapped worker anymore, which means that the map p has become injective.
The following lemma will be exploited in the correctness proof.

LEMMA 4.4

We consider the modified auction algorithm 4.1 in the DE market model. Then the following

statements hold.

(i) The procedure PLACERIGIDPROPOSALS never decreases |p (P)].
(ii) The payoff vector v increases monotonically.

(11i) A disposed rigid proposal will never be proposed again.

Proof:

(i) Let us prove the first statement. There is only one place where the procedure PLACE-
RIGIDPROPOSALS could decrease |p (P)|: Line 8. In line 8 the size of the mapping image
remains the same because we dispose all proposals except for the best rigid proposal to a

worker in Q) g.

(ii) We next show that the second statement holds. Initially, the workers’ benefit is set at
zero. There are only two places in the entire algorithm where the payoff vector v changes.
First, we discuss line 9 of the procedure PLACERIGIDPROPOSALS. Here, we set the payoff

of newly rigidly mapped workers. A rigid proposal (i,j) however, can only be made if

(v31)

v; < b;; because j must be a favourite partner of ¢, i.e. 7 € D;""’. Thus, setting v; = b;;

"We will see this more clearly later in example 4.7 where we solve an instance of the marriage problem.
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strictly increases the worker’s benefit. The second and last place is line 5 in the procedure

HUNGARIANUPDATE where we strictly increase v, as A can be shown to be strictly positive.

(iii) Finally, we prove the last statement. We note that the procedure PLACERIGIDPROPOSALS
ensures that we have v; = b;; for all rigid proposals (¢, j). Obviously, an unmapped rigid
edge (i,7) can only become a rigid proposal if it is in the augmentation digraph, which
means that we must have v; < b;;. This however, cannot happen if the rigid edge (i, )

has already been proposed, since v; increases monotonically according to part (ii).

We are now ready to discuss the correctness of the modified auction algorithm 4.1.

THEOREM 4.5 (CORRECTNESS OF THE MODIFIED AUCTION ALGORITHM 4.1)

The modified auction algorithm 4.1 produces a stable outcome in the DE market model.

Proof:

a) In all iterations of the inner while loop the modified auction algorithm 4.1 either increases

| (P)| or disposes a rigid proposal. This can be seen from the following two cases.

1. If there is an alternating path P to an unmapped worker j (augmenting path), then
DispOSERIGID(7) trivially does not change anything. Afterwards, the subroutine AL-
TERNATE(P) increases | (P)|. Moreover, ALTERNATE(P) possibly transforms some
rigid forward arcs into rigid proposals. Finally, the procedure PLACERIGIDPROPOS-
ALS gets called. This procedure might set some rigidly mapped workers’ benefit and
therefore perform some other steps, too. However, we know from part (i) of lemma 4.4
that it never decreases |u (P)|, which means that size of mapping image has increased

after the run of the inner while loop.

2. If there is an alternating path P to a worker j in g, then DISPOSERIGID(j) re-
moves the current rigid proposal (i,5) of j where i € ' (j) and (i,5) € R*. This
disposed rigid edge will never be proposed again according to part (iii) of lemma 4.4.
Afterwards, the procedures ALTERNATE(P) and PLACERIGIDPROPOSALS get called.
ALTERNATE(P) leaves | (P)| unchanged for obvious reasons. Lastly, we know from
part (i) of lemma 4.4 that PLACERIGIDPROPOSALS never decreases |u (P)|. Taken
together, we dispose a rigid proposal without changing |u (P)| in this case.

b) If there is no alternating path P to a worker j € (Q\u (P))UQ g, then the procedure HUN-
GARIANUPDATE is called. We will first show that each call of HUNGARIANUPDATE leads to
a new arc in the augmentation digraph. In the procedure HUNGARIANUPDATE we begin by
determining the set of firms P and of workers @), which are reachable from the set of doubly
mapped workers in the augmentation digraph. Thus, there is an alternating path to every
firm in P and every worker in (). We therefore have ((Q\u (P))U Qg) N Q = 0, since the
condition of the inner while loop is not satisfied when the procedure HUNGARIANUPDATE
gets called. We then set the payoff of the firms at the best currently possible value and
compute the quantity A. Recall that A = min {uz - fi(:;”) i€ Pandz€ Q\Q} Let
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A = up — fl(*v;ﬁl) for some i* € P and z* € Q\Q. The last step of the procedure HUN-
GARIANUPDATE is to increase the benefit of all workers in Q by A. We give the following

useful statements.

(i) If i € P, then D\"*) C Q.
(ii) If j = p (4), then j € Q if and only if i € P.
(iii) If = pu (i) and i € P, then j ¢ Qg because j € Q according to (ii).
(iv) We have (i,j) € F* for all i € P and j € D"*) because (i, u (i) € F* according to
(iii) and because of the definition of the subroutine PROPOSE(%).

It follows from (iv) that (i*,5) € F* for all j € ng*v;“). Note that we increase the payoff
of all workers in Q by A, which means that we especially increase the payoff of every
S Dgf;“) according to (i). Thus, we obtain z* € DEf;“) and therefore the new forward arc
(i*,2*) in the augmentation digraph as claimed in the beginning of the current part b).
This new forward arc might lead to an alternating path to a worker j € (Q\u (P)) U Qr
in the resulting augmentation digraph or not. Clearly, the procedure HUNGARIANUPDATE
gets called as long as we do not get a desired path and with each call we obtain a new
arc. This process of always obtaining a new arc in the augmentation digraph® eventually
provides an alternating path to j € Q\u (P) U Qg. Hence, the inner while loop condition

will finally be satisfied.”

c) Note that we know from part a) that each run of the inner while loop of the main algorithm
4.1 either increases |p (P)| or disposes a rigid proposal. Obviously, |x (P)| can increase at
most n times while we can dispose at most n? rigid proposals, since we know from part (iii)
of lemma 4.4 that a disposed rigid proposal will never be proposed again. Moreover, we
have seen in part b) that it takes at most n? calls of the procedure HUNGARIANUPDATE

until the next run of the inner while loop. Hence, the algorithm is finite.

d) It remains to show that the modified auction algorithm 4.1 produces a stable outcome. Let
us define @; := max; fi(;”“). The payoft (u,v) then is stable at any stage of the algorithm,
since no firm will ever form a blocking pair. Moreover, we note that the subroutines
PROPOSE(7) and ALTERNATE(P) imply that j € Dl(v;”) if j = p(i). The fact that u
must be bijective at the end of the algorithm!® and the definition of fi(;”“) in (4.1) then
ensure that (u,v;u) satisfies conditions (iv) and (v) of the stability definition 3.5 because
we set u; 1= max; fi(jv;“) in the very end of the algorithm. We next prove the individual
rationality of the outcome. We have v > 0, as we initially set v at zero and since it increases
monotonically according to part (ii) of lemma 4.4. We next prove that we also have u > 0.
Note that the outer while loop ensures that there is at least one doubly mapped worker,
when the main part of the algorithm runs. Because |P| = |Q| = n and the fact that the

11
)

mapping size never decreases (a once mapped worker never gets unmapped again)'', we

8Obviously, we can obtain at most n” new arcs.

9Note that the condition of the outer while loop ensures that there is at least one doubly mapped worker. The
fact that each firm is mapped to at most one worker and |P| = |@| = n let us therefore conclude that there must
be at least one unmapped worker.

10We will show this in the very end of the proof.

" See part a) of the proof.
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can conclude that we always have an unmapped worker until the very end of the algorithm.
An unmapped worker j however, is of nonnegative value for firm ¢ because we have v; = 0
and therefore f\") = a;j +b; —v; > 0 if (i, ) is flexible and f{/*) = a;; > 0 if (i,5)
is rigid with the nonnegativity of the matrices a and b. This clearly holds for all firms.

) in the very end of the algorithm. Thus, we

Finally, we note that we set u; := max; fi(jv;“
have u > 0 as claimed. We know from part ¢) that the algorithm is finite. The condition
of the outer while loop of the main algorithm 4.1 ensures that there are no doubly mapped
workers in the end. This and the fact that we have |P| = |@Q| = n imply that the map
p has become bijective. Hence, (u,v;u) is a stable outcome with definition 3.5, which

completes the proof. m

4.4 Complexity of the Modified Auction Algorithm

We give the following theorem.

THEOREM 4.6 (COMPLEXITY OF THE MODIFIED AUCTION ALGORITHM 4.1)

The modified auction algorithm 4.1 runs in O (n4) time in the DE market model.

Proof:

Generally, we exploit the complexity proof of Hochstéttler et al. (2006, Theorem 1, p. 4-6)
and some insights from the proof of theorem 4.5.

Note that the inner while loop of the main algorithm 4.1 is executed at most n?+4n times, since
|11 (P)] increases at most n times and because there at most n? rigid proposals to dispose.'? Thus,
the number of executions of the inner while loop is in O (n2) . Moreover, each call of the procedure
HUNGARIANUPDATE adds at least one new arc to the augmentation digraph. This means that
we must have an alternating path to a worker j € (Q\u (P)) U Qg after at most n? calls of this
procedure. We use a standard implementation of the procedure HUNGARIANUPDATE'?, which
ensures that the consecutive calls of the procedure until a desired path is found need O (n2) time
in total. This includes an update of the augmentation digraph by reusing the BFS-structure
from the previous call and storing a minimum distance A; = min{ui — fi(jv;“) | i€ ]5} from
a worker j € Q\Q to P U (. The quantity A; can be updated for each worker j in O (n)
time. Moreover, we have to update them each time we add a node to P U (), which trivially
happens O (n) times. We can then compute A = min; {A;} in O (n) time. After an update of
the payoffs in line 5 of the procedure HUNGARIANUPDATE, we set A; <— A; — A. This way,
HUNGARIANUPDATE can be implemented to continue the BF'S of its previous call with modified
payoffs. Thus, the accumulated time spent is O (n2) Afterwards, we have found an alternating
path to an unmapped or rigidly mapped worker, which means that we can then increase the
mapping size image or dispose a rigid proposal. Taken together, we get a complexity of our
modified auction algorithm 4.1 of at least O (n4). We will next prove that it will not be greater.

To this end, it clearly remains to show that the total complexity of the inner while body is
no greater than O (n*). The total complexity of the subroutines DISPOSERIGID(j) and AL-
TERNATE(P) is obviously bounded by O (nQ) and O (n3), respectively. Lastly, the procedure

12Recall that a disposed rigid proposal will never be proposed again.
'3The interested reader is referred to Galil (1986) and Hochstiéttler et al. (2005) for more details.
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that deserves more attention is PLACERIGIDPROPOSALS. In the first call, we must make n
proposals. Note that we have to find a favourite partner for each firm i € P. We have n firms
(v3)

and n workers and hence, the complexity is O (n2) so far. However, the sets D, can change
during the algorithm, which means that we have to update the augmentation digraph. Note that
the procedure PLACERIGIDPROPOSALS in the inner while loop of the main algorithm 4.1 gets
called O (n2) times. Thus, we can allocate the needed O (nQ) time to update the augmentation
digraph without changing the claimed complexity of the entire modifed auction algorithm 4.1,

which completes the proof. [ |

With the complexity of the modified auction algorithm 4.1 in the DE market model, we clearly
get an upper bound for the complexity in any “rule-based” market model, since these are just
special cases. We thus conclude that the modified auction algorithm 4.1 runs in in O (n4) time
in, for instance, the RB and the FB market model. This is a new result for the FB market
model but not for the RB market model, as the auction algorithm of Hochstéttler et al. (2006)
also displays a complexity of O (n*) in the RB market model of Eriksson and Karlander (2000).

4.5 Comparison to the Algorithm of Hochstéattler et al. (2006)

As previously mentioned, our algorithm 4.1 represents a modification of the auction algorithm
of Hochstéttler et al. (2006). Hochstéttler et al. (2006) proved that their algorithm finds a stable
outcome in the RB model. We have corrected some minor mistakes and we have modified their
algorithm s.t. it finds a stable outcome in our more general DE model. We now shortly comment
on these modifications.

The first modification concerns the inner while loop of the main algorithm 4.1. We additionally
introduce the subroutine DISPOSERIGID(j) to dispose the rigid proposal in case we have an
alternating path to a worker in Q. Furthermore, we update the firms’ benefit in the very last
line 11 of the main algorithm 4.1, since we want to account for the possibility that the outer
while loop is never executed.'

Moreover we have changed the subroutine PROPOSE(7) to favour rigid proposals over flexible
ones. This ensures that the correctness proof works. In contrast, we did not have to modify the
procedure HUNGARIANUPDATE at all.

Lastly, we have modified the procedure PLACERIGIDPROPOSALS. First, we define it as a do-
while-loop instead of a while-do-loop to ensure that its body is executed at least once. We make
this adjustment, as there can be workers in Qg or even in (Qor when there are no unmapped
firms at all. Finally, we select the best rigid proposal for all workers j € Q. If the payoff of such
a worker is not updated yet, then we dispose all other proposals and consequently adjust the
payoff. All disposed rigid proposals will never be proposed again as we have proved in part (iii)
of lemma 4.4. Disposed flexible proposals however, might be proposed again when we still have
Jj € DZ(U;“) (for (i,5) € F*) after the payoff increase of v;. This will happen in the next while
loop. But this time we will not dispose the reproposed flexible edges, since we now do not enter
the if-branch. Hence, taken together, the entire modified procedure PLACERIGIDPROPOSALS

ensures that there is no unmapped firm and that each worker has at most one rigid proposal, it

'The marriage problem is an example where the outer while loop is never run. Another example is that each
firm proposes to a different worker in the first call of the procedure PLACERIGIDPROPOSALS.
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sets the payoffs of all newly rigidly mapped workers and unmaps flexible proposals which have

become unattractive to the proposing firm because the benefit vector v has increased.!®

4.6 Some Examples

We close the thesis by presenting three examples. In the first example, we want to show how our
modified auction algorithm 4.1 works in the special case of the marriage problem. The second
example addresses the same issue in the special case of the assignment game. Finally, the third
example is devoted to a pure DE market setting that cannot be dealt with in a RB or FB market
model. We demonstrate that the auction algorithm of Hochstéttler et al. (2006) breaks down in
this last example while our modified auction algorithm 4.1 produces a stable outcome as claimed
in theorem 4.5.

In all the following examples, we display all players with striped circles. Moreover, we mark
the weight entries of rigid and flexible edges in the matrices ¢ and b in normal and bold face,
respectively. Furthermore, we always highlight rigid edges with the letter “R” in the augmen-
tation digraph and in the mapping p. Finally, we will not draw the forward arcs to mapped
workers for expositional ease. Note that there would always be a forward arc (i,j) to every
backward (mapping) arc (j,%) because we have j € DZ(U;“) if 5= p(4).

Example 4.7

We consider

P = {p17p27p37p47p5}
Q = {901,92,93,q1,95}
R = PxQand F* =10

We are clearly reduced to the marriage problem, since we only have rigid edges. The weight

matrices a and b are given below.

Hainm‘QQ‘%‘q:l‘%H

m 32324
pe |1 ]3] 232
ps 4] 2]4]1]4
pe | 213232
ps || 4] 4] 2]1]4

Table 4.1: Weight matrix ¢ in example 4.7.

'5We note that we have modified everything except for the lines 2 to 4 (where the unmapped firms make their
proposals) of the procedure PLACERIGIDPROPOSALS compared to the auction algorithm of Hochstéttler et al.
(2006).
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HbinQ1‘QQ‘QS‘Q4‘QS

m | 3]23]|3]2
23122
ps 21132713
pe | 313|324
ps | 21312113

Table 4.2: Weight matrix b in the example 4.7.

1. First step:

We set the payoff of all workers at zero and call the procedure PLACERIGIDPROPOSALS.
We first compute the potential payoffs of the firms fi(jv;”) with (4.1) and then compute the
sets DZ(U;“) using (4.3). We get

fi(?’;u) Q1 92 Qg3 Qg1 G5 P _ ()
p1 =945
. 3023 2 4 plon) _ { }
p2 1 3 2 3 2 ?5 : 42,44
4o 4 1 a4 M Dw" = Aanas )
ps D( ) :{ }
2 3 2 3 2 Da 42, q4
b D(”;#) — { }
Ps 4 4 2 1 4 2 Q1,492,957 -

We generally adopt the rule of selecting the lowest index node in case we have to choose
among several.! Hence, we have the map p = {1 = 5,2 =23 - 1,4 - 25— 1}. We
then get Qr = {1,2,5} and Qa2r = {1,2}. Note that worker 1 has a rigid proposal from
firm 3 and 5 and that we have b3; = bs; = 2. Again, we select the lowest index node. Thus,
worker 1 chooses the best rigid'” proposal (3,1), disposes firm 5 and we set v; = b3, = 2
(if-branch). Worker 2 also has two proposals. He chooses firm 2, disposes firm 4 and hence,
we set v9 = byy = 3 (if-branch). Finally, worker 5 only has one proposal of firm 1, which
is why we set v5 = by5 = 2 (if-branch). In the next iteration, the two currently unmapped
firms 4 and 5 propose to workers 4 and 5, respectively. Worker 4 only has one propsal and
we therefore set vy = byy = 2 (if-branch). Worker 5 however, has two proposals, i.e. an
old proposal from firm 1 and a new one from firm 5. It chooses the best proposal, which
stems from firm 5. Thus, worker 5 chooses firm 5, disposes firm 1 and we set vy = bss = 3
(if-branch).'® In the next iteration, the only unmapped firm 1 proposes to worker 1. This
worker keeps firm 1, disposes firm 3 and we set v; = by; = 3 (if-branch). In the following
run of the while-body, the only unmapped firm 3 proposes to worker 3 who has been

unmapped before. We therefore set v3 = b33 = 3. The procedure PLACERIGIDPROPOSALS

16Strictly speaking, we should have defined our modified auction algorithm 4.1 with the mentioned rule to
ensure uniqueness, since this is a necessary characteristic of any algorithm. However, we chose not to do so for
the sake of brevity and the clarity of the exposition.

170f course, we only have rigid proposals in the current instance of the marriage problem. We will therefore no

longer mention the rigidity of edges in the remainder of the current example.
8Note that we again have 1,2 € Qg in this iteration. However, there is nothing to do here because all these

workers only have one old proposal. Their payoff is already set accordingly and there is no proposal to dispose.
Note that the if-branch is not executed this time and hence, the algorithm does not change anything as desired.

We will skip similar comments in the remainder to ease the exposition.
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now terminates, as we do not have an unmapped firm at the moment. Summarising, we

have
p=1{1-12-23-34-45>5} Dy = {q1}
a=(3,3,4,3,4) DM = {42}
u = (0,0,0,0,0) DS = (g3}
v=13,3,3,2,3) DY = {qa}
Qr =1{1,2,3,4,5}, Qou = Q\nu(P) =0 Dy = {g5}
and figure 4.1.
R R
P, @ 2 q, P @ 2 q
R R
p, — @ q, P, & @ q,
R
p,9+—L— @ q ~r  p, 22— q
R R
p, @~ Z qQ4 7 "2 '
2 R o
p5 R q5 p5 qS
(;(’U;#) /_L

Figure 4.1: First step in example 4.7.

2. Second step:

The condition of the outer while loop is not satisfied, since there is no doubly mapped
worker. Thus, we finally have to execute line 11 of the main algorithm 4.1. We then set
uy = 3, ug = 3, uz = 4, ug = 3 and us = 4. This terminates the algorithm. Hence, we

have reached a stable outcome (u,v;u) with

p={1—-12—-23—34—405—5}

u=(3,3,4,3,4)
u=(3,3,4,3,4)
v=13,3,3,2,3)

The reader should convince himself that the above is really a stable outcome.!” We note that
the procedure PLACERIGIDPROPOSALS essentially reduces to the famous “men-propose-women-
dispose” algorithm of Gale and Shapley (1962) in the special case of the marriage problem.

19See definition 3.5 of a stable payoff and outcome in the DE model or alternatively, the stability definition 3.4

in the marriage problem.
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Example 4.8

We consider

P = {p1,p2,p3,p4,p5}
Q = {a01,92,43,q4.q5}
R* = (Qand F*=P xQ

We are obviously reduced to the assignment game, since there are only flexible edges. The

weight matrix a = b is given below.

lai || o] @] o] a] o]
pm || 32| 3 |25 3
po |15] 3 |15 [25]| 2
ps | 3 |15] 3 [15|35
ps |25] 3 [25(25]| 3
ps | 3 [35] 2 | 1 | 2

Table 4.3: Weight matrix a = b in example 4.8.

1. First step:

We set the payoff of all workers at zero and call the procedure PLACERIGIDPROPOSALS.
We first compute the potential payoffs of the firms f(v;u) with (4.1) and then compute the

ij
sets DEU;”) using (4.3). We get

O @ g :
: D,(,f w = {Q1,Q3,Q5}
D1 6 4 6 5 6 D(U;H) = {q}
3 6 3 5 4 Pz @
b2 and D" = {¢5)
6 3 6 3 7 b b
3 D('UW) — { }
5 6 5 5 6 D4 42,45
D4 D _ {go}
s 6 7 4 2 4 Ps P

Recall that we select the lowest index node in case we have to choose among several.
Hence, we have the map p={1 - 1,2 - 2,3 = 5,4 — 2,5 — 2}. Trivially, we get Qp =
Qor = 0, as we only have flexible edges in the current assignment game example. Thus, the
procedure PLACERIGIDPROPOSALS already terminates, as we do not have an unmapped

firm at the moment. Summarising, we have

p={1-12->23->54->25>2} DM = {q1, 43,05}
u=(6,6,7,6,7) DS = {42}
u = (0,0,0,0,0) D — fg5}
v = (0,0,0,0,0) D — £y, g5}
)

Qr =0, Qs = {2} and Q\u (P) = {3,4} DM = {gs}
and figure 4.2.
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Py 2% 2 q P O—@ q
P 9%
~A s @ q,
P, @ q,
Ps qs
1

Figure 4.2: First step in example 4.8.

2. Second step:

The condition of the outer while loop is satisfied with the doubly mapped worker 2. We do
not have an alternating path P to a worker j € (Q\u (P)) UQRg, i.e. there is no alternating
path to an unmapped worker (no augmenting path) and we always have Qr = () in the
current assignment game example. Thus, the procedure HUNGARIANUPDATE gets called.
We obtain P = {2,4,5}, Q = {2,5} and set u; = 6, ug = 6, u3 =7, uy = 6 and us = 7.
Moreover, we get A = 1. Hence, we have to set v =0+ 1=1and v5 =0+ 1= 1. Note
that this payoff update yields the new arcs (2,4), (3,1), (3,3), (4,1), (4,3), (4,4) and (5,1)
in the augmentation digraph. This completes the procedure HUNGARIANUPDATE.

Summarising, we have

p={1-12->23->54-25->2} DM = {41, g3}
a = (6,5,6,5,6) D — £y, 4}
u=(6,6,7,6,7) DY — L41. a3, g5}
v = (0,1,0,0,1) )

)

Qr =0, Q2 = {2} and Q\p (P) = {3,4}
and figure 4.3.

o)

Figure 4.3: Second step in example 4.8.
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3. Third step:

The condition of the outer while loop is still satisfied with the doubly mapped worker 2.
We now have several alternating paths to an unmapped worker.?’ Let us consider the
alternating path P = (g9, p4, ¢3) to the unmapped worker 3. In the inner while loop body,
we first have to execute the subroutine DisPOSERIGID(3). This does not change anything,
as the worker 3 is unmapped. Afterwards, we alternate the path 7. Note that this step
increases the size of the mapping image as desired. Finally, the procedure PLACERIGID-
PROPOSALS gets called. However, nothing happens here, since there is trivially no rigidly

mapped worker and because there is no unmapped firm at the moment. Summarising, we

now have
p={1-12->23->54-35>2} DM = fq1, g5}
i = (6,5,6,5,6) D™ = {g2, 44}
u=(6,6,7,6,7) DY — L41, a3, 45}
v =(0,1,0,0,1) D™ = {a1,49,43, 41,45}
Qr =0, Qo = {2} and Q\u (P) = {4} DY = {q1, 42}

and figure 4.4.

Figure 4.4: Third step in example 4.8.

4. Fourth step:

We next consider the alternating path P = (g9, p2, q4) to the unmapped worker 4. In the
inner while loop body, we first have to execute the subroutine DISPOSERIGID(4). This
does not change anything, as the worker 4 is unmapped. Afterwards, we alternate the
path P. Note that this step increases the size of the mapping image as desired. Finally,
the procedure PLACERIGIDPROPOSALS gets called. However, nothing happens here, since
there is trivially no rigidly mapped worker and because there is no unmapped firm at the

moment. Summarising, we now have

20We could generally adopt the rule of selecting the very first path found in case we have to choose among
several paths to ensure the uniqueness of the algorithm. Again, we chose not to include this in the definition of

our modified auction algorithm 4.1 for the sake of brevity and the clarity of the exposition.
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p={1—-12—-43—-54—305—2}

u=(6,5,6,5,6)
u=(6,6,7,6,7)
v=(0,1,0,0,1)
Qr= Qo =Q\n(P)=10
and figure 4.5.
p, @2 o‘/@ q,

G(U:’“)

Figure 4.5: Fourth step in example 4.8.

5. Fifth step:

The condition of the inner while loop is no longer satisfied, since there is no doubly
mapped worker anymore and therefore no alternating path at all. Thus, we have to run
the procedure HUNGARIANUPDATE now. We trivially obtain P = Q) = () because Qs,, = 0.
We then set uy = 6, ug = 5, uz = 6, ug = 5 and us = 6. This already completes the
procedure HUNGARIANUPDATE. Note that the algorithm now leaves the outer while loop
because there is no doubly mapped worker anymore. Lastly, line 11 of the main algorithm
4.1 brings no further change. Hence, the algorithm terminates and we have therefore

reached a stable outcome (u,v; ) with

p={{1—-12-43—54—3>5—2}

a=(6,5,6,5,6)
u=(6,5,6,5,6)
v =(0,1,0,0,1)

The reader should convince himself that the above is really a stable outcome.?! We note that
our modified auction algorithm 4.1 essentially reduces to the famous Hungarian method of Kuhn

(1955) in the special case of the assignment game.

21Gee definition 3.5 of a stable payoff and outcome in the DE model or alternatively, the stability definition 3.3

in the assignment game.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 31

Example 4.9

This last example adresses a pure DE market setting that cannot be dealt with in a RB or FB
market model. We demonstrate with this example that the auction algorithm of Hochstattler
et al. (2006) leads to an endless loop while our modified auction algorithm 4.1 produces a stable
outcome as claimed in theorem 4.5.

We consider

P = {p1,p2,p3,p4,05}
Q = {q1,92,03,q4,05}
(1,1),(1,3),(1,4),(1,5),(2,2),(2,4),(2,5),
{ (3,1),(3,3),(3,5),(4,2), (4,3), (4,4) , (5,1) , (5,2) }
o= {(1,2),(2,1).(2,3),(3,2),(3,4),(4,1) . (4,5),(5,3) ,(5,4) , (5,5) }

R* =

The weight matrices a and b are given below. Recall that we mark the weight entries of rigid

and flexible edges in normal and bold face, respectively.

Lo [ @[ ae | as[as]as ]

m|[3]2|3]2]4
p 13232
ps | 4] 24|14
pe | 213432
ps | 4] 4] 4|14

Table 4.4: Weight matrix a in example 4.9.

Hbin(h‘q ‘QS‘(M‘%H

2
m 312331
ml2]3|1]2]2
ps | 21323
| 203|122
ps | 213|313

Table 4.5: Weight matrix b in the example 4.9.

We next show that the above is a pure DE market setting that cannot be dealt with in the
RB and the FB market model. Let us first show that the example cannot be described with
the RB market model. Note that the flexibility of the edge (2, 1) implies that py, g € F, since
an edge is only flexible in the RB model if both players involved are flexible. The rigidity of
the edge (1,1) then implies that p; is rigid. This however, means that the edge (1,2) cannot
be flexible as we defined it in the current pure DE market example. Finally, we show that we
cannot account for the above example within the FB market model. To this end we note that
the rigidity of the edge (1, 1) implies that p1,q; € R, since an edge is only rigid in the FB model
if both players involved are rigid. The flexibility of the edge (1,2) then implies that g- is flexible.
This however, means that the edge (2,2) cannot be rigid as we defined it in the current pure

DE market setting.
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1. First step: Identical results for both algorithms

We set the payoff of all workers at zero and call the procedure PLACERIGIDPROPOSALS.??
We first compute the potential payoffs of the firms fi(jv;“) with (4.1) and then compute the
sets Dl(v;”) using (4.3). We get

A Mg @ @ o as |
Z DZ(’ZIJN) :{qQaqS}

b 34324 plon) _ { )

D2 3 3 3 3 2 ?5 ) 41, 92,43, q4
43 4 g 4 ™ Dy, ={q1, 43,45}

p3 Dl _ ¢ )
4 3 4 3 4 P4 41,943,495

p4 D(’U”J) — { }

ps 4 4 7 2 7 s 43: 45

Note that we favour rigid proposals over flexible ones in the procedure PROPOSE(7). Hence,
we have the map p={1 - 5,2 - 2,3 5 1,4 — 3,5 — 3}. We then get Qr = {1,2,3,5}.
The workers 1, 2 and 5 all have only one proposal, i.e. a rigid proposal. Thus, they do not
dispose any firm and we have to set v = b3 = 2, v9 = byy = 3 and v5 = b5 = 1 (always the
if-branch). Finally, the best rigid proposal of worker 3 stems from firm 4. Hence, worker
3 chooses firm 4, disposes firm 5 and we set v3 = by3 = 1 (if-branch). In the next iteration
of the do-while-loop, the unmapped firm 5 again flexibly proposes to worker 3. The best
rigid proposal of worker 3 still stems from firm 4 (the only rigid proposal). However, we
have already updated the payoff of worker 3 accordingly in the previous iteration. Hence,
we now do not execute the if-branch and therefore nothing happens. Note that this is
exactly what we want our algorithm to do. A flexible proposal should be kept if it is still
optimal for the proposing firm after some increase in the corresponding worker’s benefit.?
The procedure PLACERIGIDPROPOSALS now terminates, as we do not have an unmapped

firm at the moment. Summarising, we have

p={1-52->23->1,4-353 DV = {45}
a=(4,3,4,4,6) DM = £gy, g4}

u = (0,0,0,0,0) DM = {1, 43,45}
v=(2,3,1,0,1) DM = {gs}
Qr=1{1,2,3,5}, Qo= {3} and Q\u(P) = {4} D" ={gs.45}

and figure 4.6.

22For expositional ease, we exploit the procedure PLACERIGIDPROPOSALS of our modified auction algorithm
4.1 in this first step. A corrected version of the procedure PLACERIGIDPROPOSALS of the auction algorithm of

Hochstattler et al. (2006) however, would lead to the same results.
Z8Note that we still have 1,2,5 € Qg in this iteration besides the discussed worker 3 € Qr. However, this

does not change anything because all these workers only have one proposal and since we have already updated
their payoffs in the previous iteration. Thus, we would not carry out the if-branch and therefore nothing would

happen. We will skip similar comments in the remainder to ease the exposition.
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Figure 4.6: First step in example 4.9.

2. Second step with the auction algorithm of Hochstéttler et al. (2006):

The condition of the outer while loop is satisfied with the doubly mapped worker 3. We
consider the alternating path P = (g3, ps,q5) to the worker 5 € Qr, which means that we
have to execute the body of the inner while loop. Note that we cannot reach an unmapped
worker with an alternating path (no augmenting path) and that worker 5 is the only rigidly
mapped worker that can be reached with an alternating path. Moreover, there is no other
alternating path to the worker 5. In the auction algorithm of Hochstéttler et al. (2006)
we first execute the procedure ALTERNATE(P). This path alternating however, does not
dispose a rigid proposal as desired. Neither does it lead to a worker in QQar. Afterwards,
the procedure PLACERIGIDPROPOSALS gets called. This procedure however, does not

change anything. Summarising, we now have

p={1-52->23->1,4-355 D = fg5)
a=(4,3,4,4,6) DM = £y, q4}

u = (0,0,0,0,0) DM = fq1.qs,q5}
v=(231,0,1) D" = {43}
Qr=1{1,2,3,5}, Qo = {6} and Q\u(P) = {4} D" = {4345}

and figure 4.7.

P, q
P, ?x q,
~ D ds
P4 2 q,

Ps @QIP_
(;(1':;1')

Figure 4.7: Second step with the auction algorithm of Hochstattler et al. (2006) in example 4.9.
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3. Third step with the auction algorithm of Hochstattler et al. (2006):

We consider the alternating path P = (g¢s5,ps,q3) to the worker 3 € Q. Note that this
worker is the only rigidly mapped worker that can be reached by an alternating path and
that the path P is the only path available. Furthermore, we do not have an alternating
path to an unmapped worker (no augmenting path). Thus, we carry out the body of the
inner while loop. In the auction algorithm of Hochstattler et al. (2006) we first have to
run the procedure ALTERNATE(P). Note that this path alternating does not dispose a
rigid proposal nor does it lead to a worker in QQap as desired. Afterwards, the procedure
PLACERIGIDPROPOSALS gets called. This procedure however, does not change anything.
As can be seen from figure 4.8, we are exactly back to the situation in the beginning of the
second step. Moreover, we note that we have never had any choice.?* Thus, the auction

algorithm of Hochstéttler et al. (2006) necessarily leads to an endless loop.

Figure 4.8: Third step with the auction algorithm of Hochstéttler et al. (2006) in example 4.9.

Now, we study how our modified auction algorithm 4.1 proceeds after the first step.?’

2.” Second step with the modified auction algorithm 4.1:

The condition of the outer while loop is satisfied with the doubly mapped worker 3. We
consider the alternating path P = (gs3,ps,¢q5) to the worker 5 € Qp, which means that
we have to execute the body of the inner while loop. Note that we cannot reach an
unmapped worker with an alternating path (no augmenting path) and that worker 5 is
the only rigidly mapped worker that can be reached with an alternating path. Moreover,
there is no other alternating path to the worker 5. As we have shown before the auction
algorithm of Hochstéttler et al. (2006) would now lead to an endless loop. Let us see
how the new auction algorithm 4.1 works at this stage. We first have to execute the
additional procedure DisPOSERIGID(5), which removes the rigid proposal (1, 5) as desired.
Afterwards, the procedure ALTERNATE(P) gets called. This path alternating ensures that

the size of the mapping image remains the same as can be seen from figure 4.9.

24Gtrictly speaking, this statement is redundant, as uniqueness is a necessary characteristic of any algorithm.
However, one could imagine appropriate rules that pick one option should there be several. From this perspective,
it is important that we showed that we never had a choice, since this means that the encountered endless loop in

the auction algorithm of Hochstéttler et al. (2006) cannot be remedied by any rules.
25 Again, we could show that the first step leads to the same results with both algorithms. We omit to prove

this for the sake of brevity.
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Gvin)

Figure 4.9: Intermediate result in the second step with the modified auction algorithm 4.1 in

example 4.9.

Finally, we have to run the procedure PLACERIGIDPROPOSALS. The currently unmapped
firm 1 then rigidly proposes to worker 1. Worker 1 chooses firm 1, disposes firm 3 and we
set v1 = by; = 3 (if-branch). In the next iteration the unmapped firm 3 rigidly proposes to
worker 3. The best rigid proposal of worker 3 stems from firm 3. Thus, we unmap firm 4
and set v3 = bgz = 3 (if-branch). Now, the only unmapped firm 4 rigidly proposes to worker
4. Worker 4 does not have any other proposals. Hence, we do not dispose any proposals
and set vy = byy = 2 (if-branch). This terminates the procedure PLACERIGIDPROPOSALS,

since there are no unmapped firms anymore. Summarising, we now have

p={1-12-23—-34—405—>5} ”'”_{ql}
= (3,3,4,3,6) ) = {go}
= (070707070) D( “) = {Q37Q5}
V= (37373727 1) D( N) {Q4aQ5}
Qi = {1,2,3,4}, Qo = Q\p (P) = 0 ) = (g5}
and figure 4.10.
R
P, @<—R——@ q, P O—2 q
R
p, 2—L2—a p, o—— @ q,
R
Ps @\'\R—@ qs A p; D q,
TN R
P @‘\\—\R@ ds | @ Z Q4
Y
O/ T——" R ps O————D q;
i) Lt

Figure 4.10: Second step with the modified auction algorithm 4.1 in example 4.9.
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3.” Third step with the modified auction algorithm 4.1:

Note that we do not have a doubly mapped worker and therefore no alternating path at
all. Hence, the condition of the inner while loop is no longer satisfied and we have to carry
out the procedure HUNGARIANUPDATE. Because @, = () we trivially get P=Q=0.
We set uy = 3, uo = 3, uz = 4, uq = 3 and us = 6. This already completes the procedure
HUNGARIANUPDATE. Moreover, we leave the outer while loop because there is no doubly
mapped worker anymore. Lastly, line 11 of the main algorithm 4.1 brings no further

change. Thus, the algorithm terminates and we have found a stable outcome (u,v; ) with

p={1—-12-23—34—405—5}

u=(3,3,4,3,6)
u=(3,3,4,3,6)
v=1(3,3,3,2,1)

The reader should convince himself that the above is really a stable outcome.?® Note that
the above example adressed a pure DE market setting that cannot be dealt with in a RB or FB
market model. It is therefore no surprise that the auction algorithm of Hochstéattler et al. (2006)
did not work here, as this algorithm is designed for RB markets. The example therefore showed
the necessity of modifying the auction algorithm of Hochstéttler et al. (2006). Finally, this last
example demonstrated that our modified auction algorithm 4.1 produced a stable outcome as

claimed in theorem 4.5.

26Gee definition 3.5 of a stable payoff and outcome in the DE model.
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