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Prefa
e\The e�ort of the e
onomist is to see, to pi
ture the interplay of e
onomi
 el-ements. The more 
learly 
ut these elements appear in his vision, the better; themore elements he 
an grasp and hold in his mind at on
e, the better. The e
onomi
world is a misty region. The �rst explorers used unaided vision. Mathemati
s is thelantern by whi
h what before was dimly visible now looms up in �rm, bold outlines.The old phantasmagoria disappear. We see better. We also see further."- Irving FisherDuring my studies at the FernUniversit�at in Hagen I learned to appre
iate the beauty and ele-gan
e of various 
on
epts in mathemati
s. However, as an e
onomi
 graduate I have sometimesnot grasped the relation to reality. In this sense, I would like to express my sin
ere thanks tomy a
ademi
 advisor Prof. Dr.Winfried Ho
hst�attler. He gave me the possibility to work on amathemati
ally interesting subje
t, whi
h displays great appli
ability in e
onomi
s.I would like to express my gratitude to Robert Ni
kel for supporting me during all stagesof the Ba
helor thesis. The e-mail and telephone 
orresponden
e with him proved to be veryinspiring, reassuring and valuable at the same time.Moreover, many thanks go to Dr. Thomas P��ner for proof-reading large parts of the Ba
h-elor thesis. I was lu
ky to have him as a fellow student and friend during my studies at theFernUniversit�at in Hagen.Furthermore, I am deeply indebted to my parents Ernst and Renate as well as my brothersRaphael and Josua for their support during long years. I am proud of all of you. Finally, I owevery mu
h to Claudia and her family. She has been very understanding during all stages of theBa
helor thesis and she has always motivated me and given me strength.St. Gallen, August 2007 David S
hiess
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Abstra
tThe present Ba
helor thesis deals with mixed mat
hing markets. In the famous mixed mat
hingmarket model of Eriksson and Karlander (2000) the 
hara
teristi
 of the two players involved ina 
ontra
t determines the rigidity or 
exibility of the 
ontra
t. We give a further generalisationby introdu
ing a model where the 
hara
teristi
 of the edges between any two players de
ideswhether the 
ontra
t is rigid or 
exible. We therefore 
all it the de
isive edges (DE) marketmodel and show that it 
ontains - among other models - the model of Eriksson and Karlander(2000) as a spe
ial 
ase. Ho
hst�attler et al. (2006) developed a polynomial au
tion algorithm forthe mixed mat
hing market model of Eriksson and Karlander (2000). We modify their algorithmto prove the existen
e of a stable out
ome in our more general DE model. Finally, we show thatour modi�ed au
tion algorithm runs in O �n4� time.
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Notation
Upper
ase LettersA, A(v;�) set of ar
s, set of ar
s in the augmentation digraph G(v;�)C positive 
onstantD(v;�)i set of favourite workers of �rm iE set of edgesF , F � set of 
exible nodes, set of 
exible edgesG, GD, G(v;�) graph, digraph, augmentation digraphM , M 0 mat
hingsMn�n set of (n� n)-matri
esP , �P , PU set of �rms, spe
ial set of �rms, set of unmapped �rmsQ, �Q, Q2� set of workers, spe
ial set of workers, set of doubly mapped workersQR set of rigidly mapped workersQ2R set of workers with at least two rigid proposalsR, R� set of rigid nodes, set of rigid edgesS, SP , SQ 
oalition, P -agents in the 
oalition S, Q-agents in the 
oalition SV set of nodesLower
ase Lettersa, b weight (produ
tivity) matri
ese edgef (v;�)ij bene�t of �rm i from a 
ollaboration with worker jg, h real-valued fun
tionsi, j index for �rms (P -agents), index for workers (Q-agents)k, l indi
esm, n0, r natural numbersn number of �rms, number of workersp, q �rm, workers; y, z start node; nodest natural number or zero: t = minfjSP j ; jSQjgu, �u payo� ve
tor of �rms, virtual payo� ve
tor of �rmsv payo� ve
tor of workersx, xij assignment matrix, primal variablevi



NOTATION viiUpper
ase Greek Letters�, �j spe
ial quantitiesLower
ase Greek Letters�, �ij weight fun
tion, weight� (S) worth of 
oalition S� mappingCalligraphi
 LettersO (nr) polynomial 
omplexity timeP pathAbbreviationsBFS breadth �rst sear
hDE de
isive edgesDLP dual linear programFB 
exibility biasi.e. in examplePLP primal linear programRB rigidity biass.t. su
h thatw.l.o.g. without loss of generalityw.r.t. with respe
t to



Chapter 1Introdu
tionThe theory of mat
hing is an unusual blend of dis
iplines. Over the past years game theory,e
onomi
s, 
omputer s
ien
e and 
ombinatorial optimisation 
ontributed to the theory. Wewill 
on
entrate on two-sided mat
hing in this Ba
helor thesis. The probably most prominentexample for two-sided mat
hing is the labour market. Clearly, any agent in the labour marketis either a �rm or a worker, whi
h explains why we 
all su
h a market two-sided or bipartite.Thus, we 
onsider the �nite and disjoint sets of �rms P and workers Q in the labour market.We would like to mention that this is in 
ontrast to produ
t markets, where the same agent 
ana
t as a seller and as a buyer.1 Obviously, the sellers and buyers are not two disjoint subsetsof the set of all agents in produ
t markets. Hen
e, produ
t markets are not two-sided. Finally,we use the term one-to-one mat
hing or simply mat
hing, sin
e we will study the settingwhere a �rm hires exa
tly one worker and where all workers will work for one �rm only.2There are two fundamental models for two-sided mat
hing markets: The marriage modelof Gale and Shapley (1962) and the assignment game of Shapley and Shubik (1972). Inthe marriage model, we 
onsider the set of men and women who are eligible to marriage insome small village. Ea
h individual has a preferen
e list of his/her3 a

eptable partners. Theproblem is to �nd a marriage s.t. there is no pair (i; j), where both, man i and woman j, arenot mat
hed but prefer ea
h other over their 
urrent partners. Su
h a marriage will be 
alledstable. Gale and Shapley (1962) proved the existen
e of a stable marriage with their famous\men-propose-women-dispose" algorithm in the 
ase where preferen
e lists are stri
t.In the assignment game, we atta
h a money value to ea
h edge and 
all it the edge's weight.Clearly, money is a 
ontinuous variable and hen
e, the market will be 
ontinuous. In the labourmarket, this money value atta
hed to any edge 
onne
ting a �rm i with a worker j 
an be thoughtof as the total produ
tivity that installs if worker i is employed by �rm j. This produ
tivity
an be freely transferred between the agents.4 The possibility of monetary transfers makes theassignment game 
exible 
ompared to the rigid marriage problem. A solution of an assignment1Imagine an agent who a
ts as a seller if the pri
e is suÆ
iently high. For low enough pri
es the same agentis likely to a
t as a buyer.2For a highly edu
ated worker applying for a high position in a �rm su
h a setting is very realisti
. Forexample, we 
ould study the mat
hing of �rms and 
hief �nan
ial oÆ
ers. On the other hand, if we study lowlevel jobs, then we should allow that a �rm hires several workers for the same job instead.3For the sake of brevity we omit any female forms if possible in the remainder of the thesis.4In the 
urrent example of the labour market, the produ
tivity 
an be transferred through the wage the workerre
eives. 1



CHAPTER 1. INTRODUCTION 2game 
onsists of a mat
hing of �rms with workers5 and an allo
ation of the 
orrespondingweight and will be 
alled an out
ome. If no pair re
eives less than the weight of its 
onne
tingedge, then we 
all the solution a stable out
ome. Te
hni
ally speaking, the assignment gameamounts to the determination of a maximally weighted mat
hing in the bipartite graph of�rms and workers. Shapley and Shubik (1972) showed the existen
e of stable out
omes viaduality arguments of linear programming. The 
lassi
 algorithm for weighted bipartite graphsis undisputably Kuhn's Hungarian method6.The pra
ti
al relevan
e of both models is immense. For instan
e, let us 
onsider some newgraduates in mathemati
s. They have the dis
rete 
hoi
e of entering either the publi
 or theprivate labour market. To be more spe
i�
, they 
an be
ome a tea
her of mathemati
s atsome high s
hool or they 
an work in the risk department of some insuran
e 
ompany. If agraduate de
ides to be
ome a tea
her, then his salary will be �xed. This part of the market isappropriately des
ribed with the marriage model. On the other hand, if a graduate 
hooses towork for an insuran
e 
ompany, then his salary will no longer be �xed. Instead, the graduateand the 
ompany will 
ontra
t on the salary among other job 
hara
teristi
s. This part ofthe market 
an be appropriately modelled with the assignment game, whi
h allows monetarytransfers. Taken together, it is 
learly tempting to study the entire market - the private andthe publi
 labour market - simultaneously within a single model. We will refer to su
h models,whi
h 
ontain rigid as well as 
exible aspe
ts, as mixed mat
hing markets.We would like to give a histori
al remark that highlights the pra
ti
al relevan
e of mat
hingtheory.7 The Ameri
an Hospital Asso
iation and the Asso
iation of Ameri
an Medi
al Collegesagreed in 1951 to use a 
entral algorithm to mat
h medi
al students with medi
al interns ofhospitals. For a liberal 
ountry like the United States, this seems to be quite remarkable. Theagreement to use a 
entral mat
hing was 
aused by a disastrous market situation. The numberof positions for interns was greater than the number of medi
al students applying for su
hpositions. The resulting 
onsiderable 
ompetition among hospitals manifested itself in the fa
tthat hospitals attempted to �nalise binding agreements with student earlier than their prin
ipal
ompetitors. This led to a 
ostly and ineÆ
ient market situation: Hospitals did not knowthe �nal grades of their appointed students while the students and the medi
al s
hools foundthat s
hooling was disrupted by the tedious pro
ess of seeking desirable interns. The 
entralmat
hing algorithm8 was implemented as a voluntary pro
edure. Students and hospitals werefree to arrange their mat
hes outside of the system. Despite this voluntariness, the parti
ipationrates initially ex
eeded 95 per
ent.The marriage problem and the assignment game lead to very similar results: Equality of the
ore and the set of stable out
omes as well as the latti
e stru
ture of the 
ore. Thus, it is notvery surprising that Roth and Sotomayor (1996) asked for an explanation of these similarities inthe two mentioned models. Eriksson and Karlander (2000) addressed the 
hallenge of Roth andSotomayor (1996) by presenting a mixed mat
hing market model9 that 
ontains the marriage5To be more general: A mat
hing of P -agents with Q-agents.6See the origin work of Kuhn (1955) or the more re
ent treatment of Frank (2004).7See Roth (1984), Roth (1991) or the 
omprehensive treatment of two-sided mat
hing of Roth and Sotomayor(1999) for a thorough examination.8It was 
alled NIMP: N�ational I�ntern M� at
hing P�rogram.9The so-
alled RiFle (RigidFlexible) assignment game.



CHAPTER 1. INTRODUCTION 3problem and the assignment game as spe
ial 
ases. They allow for rigid and 
exible playersin their model and de�ne an edge to be rigid if at least one of the players involved is rigid.Eriksson and Karlander (2000) �nally provided a pseudo-polynomial au
tion algorithm to provethe existen
e of stable out
omes in their mixed mat
hing market model. Based on the ideasof Eriksson and Karlander (2000), Ho
hst�attler et al. (2006) 
onstru
ted a polynomial au
tionalgorithm and proved that it runs in O �n4� time where 2n denotes the number of players.Their au
tion algorithm will serve as a ben
hmark for our work. Parallel to this bran
h ofthe literature, Sotomayor (2000) also showed that there is always a stable out
ome in a mixedmat
hing market model whi
h is very similar to the model of Eriksson and Karlander (2000).Finally, Ho
hst�attler et al. (2005) derived another polynomial algorithm from the key lemmasof Sotomayor (2000) and showed that this algorithm also runs in O �n4� time. In this thesis wegive a further generalisation of the mixed mat
hing market model of Eriksson and Karlander(2000). In 
ontrast to the model of Eriksson and Karlander (2000), we de�ne the rigidity or
exibility of any edge to be independent of the players involved. We 
all the resulting marketthe de
isive edges (DE) market model and show the usefulness of su
h a generalisation. Weintrodu
e a modi�
ation of the au
tion algorithm of Ho
hst�attler et al. (2006) and exploit it toprove the existen
e of a stable out
ome in our general DE model. Furthermore, we show thatour modi�ed au
tion algorithm runs in O �n4� time, too. Lastly, we would like to mention theinteresting mat
hing market model of Fujishige and Tamura (2004). They generalise the mixedmat
hing market of Eriksson and Karlander (2000) by modelling the preferen
es of agents onea
h side over the agents on the other side with 
on
ave utility fun
tions. However, our modelis not 
ontained in theirs and vi
e versa.The thesis is stru
tured as follows. First, we present some basi
 mathemati
al 
on
epts thatwill help the reader to understand the remainder of the thesis. Chapter 3 then presents di�erentmat
hing market models. We begin with two famous spe
ial 
ases: The assignment game andthe marriage model. These two models are 
ontained in the mixed mat
hing market model ofEriksson and Karlander (2000). Afterwards, we give a further useful generalisation: The de
isiveedges (DE) market model. We will show that the model of Eriksson and Karlander (2000) andmany other models are simply spe
ial 
ases of this DE model, whi
h will be studied in theremainder of the thesis. In 
hapter 4 we introdu
e a modi�
ation of the au
tion algorithmof Ho
hst�attler et al. (2006). We then perform the main task of the thesis: We exploit thementioned modi�ed au
tion algorithm to give a 
onstru
tive proof of the existen
e of a stableout
ome in our general DE market model. Besides the 
orre
tness of the modi�ed au
tionalgorithm, we establish the result that it runs in O �n4� time. Lastly, we 
lose the thesis bygiving some 
on
rete examples and a 
omparison to the au
tion algorithm of Ho
hst�attler et al.(2006).



Chapter 2Mathemati
al PreliminariesIn this 
hapter we introdu
e the mathemati
al 
on
epts that will be exploited in the remainderof the thesis. For the sake of brevity, we will 
ustomise these preliminaries to our future needs.For a more general and more thorough treatment we refer the interested reader to Ahuja et al.(1993), Ho
hst�attler (1999), Jungni
kel (2005) and Aigner (2006).2.1 Some Con
epts in Graph TheoryWe �rst give the de�nition of a digraph and a graph, respe
tively.Definition: 2.1 (Digraph and Graph) Let V and A denote a �nite set of nodes (ver-ti
es) and a �nite set of ar
s, respe
tively. We denote an ar
 by the ordered pair (z1; z2) withz1; z2 2 V where z1 and z2 represent the head and tail node, respe
tively. We 
all the tupleGD = (V;A) a dire
ted graph or simply a digraph.If the orientation of the ar
s is irrelevant, then we 
all them edges and denote the set of alledges with E. We denote an edge by the unordered pair (z1; z2) with z1; z2 2 V where z1 andz2 represent the two end nodes of the edge.1 Finally, we 
all the tuple G = (V;E) a graph. 2With a slight abuse of notation we adopt the 
onvention that the �rst entry z1 of an edge(z1; z2) denotes a �rm while the se
ond entry z2 represents a worker. We will need the followingde�nitions to des
ribe a mat
hing.Definition: 2.2 (In
ident Nodes and Edges) We 
onsider the graph G = (V;E). Anode z 2 V is 
alled in
ident to an edge e = (z1; z2) 2 E if z = z1 or z = z2. Finally, two edgese1 = (y1; z1) ; e2 = (y2; z2) 2 E are in
ident if fy1; z1g \ fy2; z2g 6= ;. 2Lastly, the 
on
ept of a path will be fundamental in our modi�ed au
tion algorithm 4.1.Definition: 2.3 (Path in a Digraph) A path P = (z1; z2; :::; zl) in a digraph GD =(V;A) is a sequen
e of verti
es zi 2 V s.t. (zi; zi+1) 2 A and zi 6= zj for all i 6= j. We say thatthe node zl is rea
hable from the node z1 with the path P. 2In the remainder of the thesis, we will rule out loops and multigraphs. Instead, we will studylabour markets, where an agent is either a �rm or a worker. Moreover, we want to ensure that1A loop is an edge 
onne
ting a node to itself. Thus, we 
an have z1 = z2 in 
ase of a loop.4



CHAPTER 2. MATHEMATICAL PRELIMINARIES 5ea
h �rm 
an 
ontra
t with ea
h worker and vi
e versa. This leads to the following spe
ial 
aseof a graph.Definition: 2.4 (Complete Bipartite Graph) A graph G = (V;E) is 
alled bipartiteif it allows for a partition of the set of nodes V = P _[Q s.t. ea
h edge has one end node in P andthe other in Q. A bipartite graph with jP j = n and jQj = m is 
alled 
omplete if it satis�esE = f(p; q) j p 2 P; q 2 Qg, whi
h implies that we have jEj = nm. 2Note that a 
omplete bipartite graph 
ontains almost all the relevant aspe
ts of the labourmarket we want to study. We 
an de�ne P as the set of �rms and Q as the set of workers.Clearly, these two sets are �nite and disjoint in the labour market.2.2 Mat
hing in Complete Weighted Bipartite GraphsAs previously mentioned, we only have edges 
onne
ting a �rm with a worker in 
ompletebipartite graphs. We now atta
h a money value to ea
h edge (i; j) that 
an be thought of asthe total produ
tivity that installs if a worker j is employed by a �rm i. Obviously, su
h aprodu
tivity must be nonnegative.Definition: 2.5 (Weighted Graph) A graph G = (V;E; �) is 
alled weighted if it hasa weight fun
tion � : E ! R+ . 2From now on we assume a 
omplete weighted bipartite graphG = (V;E; �) with jP j = jQj = n.This assumption is inno
ious, sin
e we 
an always introdu
e dummy nodes with zero weights.We next turn to the fundamental de�nition of a mat
hing. Be
ause we are interested in thesituation where ea
h �rm wants to hire one worker and ea
h worker 
an only be employed byone �rm, the mat
hing will be one-to-one.2 For the sake of brevity, we simply use the termmat
hing.Definition: 2.6 (Mat
hing in a Weighted Bipartite Graph, Weight of a Mat
h-ing) We 
onsider a weighted bipartite graph G = (V;E; �) with V = P _[Q. A mat
hingM � E is a set of pairwise non-in
ident edges. We 
all two nodes p 2 P and q 2 Q mat
hedwith ea
h other if (p; q) 2M . Moreover, we 
all a node unmat
hed if it is not in
ident withan edge of M . We de�ne the weight of a mat
hing M as � (M) = Pe2M� (e). Finally, we 
all Ma maximally weighted mat
hing if � (M) � � (M 0) for all other mat
hings M 0. 2We will see that the assignment game boils down to �nding a maximally weighted mat
hingin a 
omplete weighted bipartite graph.2The 
omprehensive treatment of two-sided mat
hing of Roth and Sotomayor (1999) also 
ontains a 
hapteron many-to-one mat
hing. Additionally, the interested reader 
an also �nd examples of non-two-sided mat
hingsu
h as the roomate problem or the man-woman-
hild problem. In all the mentioned problems however, we donot ne
essarily have stable out
omes.



CHAPTER 2. MATHEMATICAL PRELIMINARIES 62.3 Algorithms and ComplexityLet us give the following rather informal de�nition of an algorithm.Definition: 2.7 (Algorithm) We de�ne an algorithm as an exa
t �nite des
ription ofa sequen
e of a �nite number of steps that establish a 
ertain goal. However, ea
h step must beunique and eÆ
iently exe
utable. Finally, the algorithm must terminate after the �nite numberof steps. 2We will formulate our modi�ed au
tion algorithm in pseudo-
ode. Moreover, we will sometimesviolate the uniqueness 
ondition for the sake of expositional ease. However, all su
h violations
an easily be remedied by 
ertain rules like sele
ting the node with the lowest index in 
ase thereare several nodes to operate on at some step in the algorithm.Besides the 
orre
tness, a major 
hara
teristi
 of any algorithm is its runtime behavior. Wewill make use of the O-notation to give upper bounds on the 
omplexity of our modi�ed au
tionalgorithm and to 
ompare its runtime behavior with those of other algorithms.Definition: 2.8 (Complexity, O-Notation) We 
onsider the fun
tions g : N ! N andh : N ! N. We write g = O (h) if there exist C > 0 and n0 2 N s.t. g (n) � Ch (n) for alln � n0. 2Note that we have to read the equation g = O (h) from the left to the right.3 Moreover,we would like to mention that if a problem 
an only be solved with algorithms displayingexponential growth in their runtimes, then the problem is generally 
onsidered to be insolvable.Thus, algorithms of interest exhibit at most polynomial runtimes4. Fortunately, we will be ableto prove that our modi�ed au
tion algorithm runs in O �n4� time.2.4 Breadth First Sear
hOur modi�ed au
tion algorithm will exploit the breadth �rst sear
h as a subroutine. We alreadypresent this standard sear
h method here, sin
e we want to fo
us on the really relevant aspe
tsof the algorithm later.The breadth �rst sear
h (BFS) determines all nodes that are rea
hable in a given digraphfrom a given start node. For this purpose, BFS �rst visits all nodes that are rea
hable withonly one ar
 from the start node, marks these nodes as visited and stores them in a queue. Assoon as all su
h dire
tly rea
hable nodes are visited, we remove a node from the queue (
urrentnode), visit all unvisited nodes that are dire
tly rea
hable from the 
urrent node and put themon the queue. BFS 
ontinues in this manner until some termination 
ondition is met or thequeue has be
ome empty. The following algorithm in pseudo-
ode implements the breadth �rstsear
h. It must be 
alled with BFS((GD; s)) where GD is some dire
ted graph and s denotesthe start node of the sear
h.53Otherwise, we 
ould get the 
ontradi
tion n = n2 from n = O �n2� and n2 = O �n2�.4That is, their runtime fun
tions must be in O (nr) for some r 2 N.5Our modi�ed au
tion algorithm will exploit BFS to determine all nodes that are rea
hable in the augmen-tation digraph from the set of doubly mapped workers. Hen
e, we use some variant of the presented algorithm.Spe
i�
ally, we exe
ute lines 3 and 4 for all doubly mapped workers. Moreover, we will not use a termination
ondition and read o� the rea
hed nodes from the ve
tor Prede
essor in the very end.



CHAPTER 2. MATHEMATICAL PRELIMINARIES 7Algorithm 2.9: Breadth First Sear
h (BFS)1: Queue ;2: Prede
essor  03: Prede
essor [s℄ �1 3 The path begins here4: Queue:append (s) 3 Put s on the queue5: while Queue 6= ; do6: y = Queue:top () 3 Take y and remove it from the queue7: for z 2 y:Neighbourhood do 3 There is an ar
 from y to z8: if Prede
essor [z℄ = 0 then9: Prede
essor [z℄ y10: if z satis�es termination 
ondition then11: P  (s; :::; z)12: else13: Queue:append (z)14: end if15: end if16: end for17: end whileThe next 
hapter will present di�erent mixed mat
hing market models.



Chapter 3Mat
hing Market ModelsIn this 
hapter we �rst present the assignment game of Shapley and Shubik (1972) and after-wards the marriage model of Gale and Shapley (1962). We use general notation from the verybeginning, sin
e these two models are spe
ial 
ases of the quite general mixed mat
hing marketmodel of Eriksson and Karlander (2000). Finally, we introdu
e a further useful generalisation:The de
isive edges (DE) market model. This most general model will be exploited in the re-mainder of the thesis. The entire 
hapter is devoted to develop some intuition for the presentedmat
hing market models. We therefore do not attempt to give a thorough introdu
tion to thevarious existing models.1As previously mentioned, we always assume w.l.o.g. that jP j = jQj = n. The P - and the Q-agents will also be 
alled the �rms and the workers of a labour market, respe
tively. Ea
h �rm
an 
ontra
t with ea
h worker and vi
e versa. However, ea
h �rm is interested in hiring exa
tlyone worker and ea
h worker 
an only be employed by one �rm. Hen
e, the goal is to �nd stableone-to-one mat
hings2. For the sake of brevity, we simply use the term mat
hing from now on.Instead of �rms and workers, the reader 
an imagine sellers and buyers in a market where ea
hseller possesses one indivisible good and ea
h buyer is interested in pur
hasing one su
h good.The sets of sellers and buyers are �nite, disjoint and denoted with P and Q, respe
tively. Wedenote a nonnegative real number (weight) �ij with ea
h partnership (pi; qj) with i; j 2 Nn .This number 
an be thought of as the di�eren
e between the reservation pri
e of the buyer andthe seller. Let us 
ome ba
k to our guiding example: The labour market. We then interpret �ijas the worth of produ
tivity when the worker qj is hired by the �rm pi. For notational ease, leti and j be the index for �rms and workers for the remainder of the thesis.Besides V = P _[Q, we now introdu
e the additional partition of players V = R _[F whereR and F denote the set of rigid and 
exible players, respe
tively. Rigid agents want a �xedsalary while 
exible agents prefer to 
ontra
t on the salary. Moreover, we repla
e the weightfun
tion � : E ! R+ with the two produ
tivity matri
es a; b 2 Mn�n (R+) in the sensethat3 � (i; j) = �ij = aij + bij for ea
h edge (i; j) 2 E. Additionally, we de�ne a payo� as the1The interested reader is referred to Roth and Sotomayor (1999), Eriksson and Karlander (2000) and Jin(2005).2The 
omprehensive treatment of two-sided mat
hing of Roth and Sotomayor (1999) 
ontains a 
hapter onmany-to-one mat
hing.3As previously mentioned, we use general notation already here. The meaning of this notation will be explainedin se
tion 3.3. 8



CHAPTER 3. MATCHING MARKET MODELS 9pair (u; v) of the ve
tors u; v 2 Rn . The ve
tors u and v represent the bene�t of the �rms andworkers, respe
tively.3.1 Spe
ial Case I: Assignment GameIf we set R = ; in the mixed mat
hing market model of Eriksson and Karlander (2000)4, then weobtain the famous assignment game of Shapley and Shubik (1972). Money plays an importantrole in this 
ooperative game. The worth of any 
oalition of players S is determined solely withthe best pairwise 
ombination that the members of the 
oalition 
an form. Thus, we have1. � (S) = 0 if S 
ontains either only P -agents or only Q-agents,2. � (S) = aij + bij if S = (i; j) with i 2 P and j 2 Q;3. � (S) = max f� (i1; j1) + � (i2; j2) + :::+ � (it; jt)g with f(i1; j1) ; (i2; j2) ; :::; (it; jt)g � SP�SQ where SP and SQ denote the P - and Q-agents in S and where t = min fjSP j ; jSQjg.The rules of the game allow the members of a 
oalition to split their worth in any way theylike. Hen
e, we do not only allow that monetary transfers are made between mat
hed partners5but we do also allow for transfers between unmat
hed members of a 
oalition.6 Clearly, we musthave Pi2SP ui+Pj2S vj = � (S). The problem is to determine � (S) for the given produ
tivitymatri
es a and b and is 
alled the assignment problem. Of 
ourse, we are espe
ially interestedin 
omputing � (P _[Q), sin
e this is the maximum total payo� available to the players of thegame.The assignment problem is equivalent to the problem of �nding a maximally weighted mat
hingin the 
omplete weighted bipartite graph G = (V;E; a; b) with the produ
tivity matri
es a and b.Fortunately, Kuhn (1955) developed the popular Hungarian method7, whi
h �nds a maximallyweighted mat
hing in weighted bipartite graphs. The Hungarian method 
learly in
uen
ed ourwork, as the reader will see when we present our modi�ed au
tion algorithm in se
tion 4.2 aswell as later in example 4.8 where we solve an instan
e of the assignment game. We 
an 
astthe assignment problem into the following linear program (PLP).Problem 3.1 (Primal Linear Program) Maximise Pi;j (aij + bij) � xij subje
t to Pi xij �1 for all j 2 Nn , Pj xij � 1 for all i 2 Nn and xij � 0 for all i; j 2 Nn .If xij = 1, then i and j form a partnership and xij = 0 otherwise. Clearly, Pi xij = 0 meansthat i is unassigned.We next give the 
orresponding dual linear program (DLP).Problem 3.2 (Dual Linear Program) MinimisePi2P ui+Pj2Q vj subje
t to ui � 0; vj �0 and ui + vj � aij + bij for all i; j 2 Nn .4See se
tion 3.3.5These are the obvious transfers, sin
e a �rm will pay the employed worker a 
ertain wage.6This assumption implies that there 
an also be monetary transfers between workers, for instan
e in a labourunion, and between �rms, for instan
e in an employer asso
iation.7See the origin work of Kuhn (1955) or the more re
ent treatment of Frank (2004).



CHAPTER 3. MATCHING MARKET MODELS 10It 
an be shown that there exists an integer solution to the primal linear program.8 Hen
e,we 
an 
on
lude that the above dual linear program must have an optimal solution. A

ordingto the fundamental duality theorem of Dantzig (1963, p. 129) we therefore have identi
al valuesfor the obje
tive fun
tions of the PLP and the DLP, respe
tively. Thus, if the matrix x is anoptimal assignment and if (u; v) is a solution to the DLP, then we getXi2P ui +Xj2Q vj =Xi;j (aij + bij) � xij = � (P _[Q) : (3.1)We highlight the fa
t that the pair (u; v) of the dual variables u and v 
orresponds to thepayo� of the game. Let us now think about the solution of the game, whi
h we 
all an out
ome.A

ording to (3.1) an out
ome 
onsists of a mat
hing and the payo� (u; v). We next de�ne thestability of the payo� and the out
ome.Definition: 3.3 (Payoff and Out
ome Stability) A payo� (u; v) is 
alled stable if(i) ui + vj � aij + bij for all edges (i; j) 2 P �Q.A stable out
ome (u; v;�) 
onsists of a stable payo� (u; v) and a bije
tive map � : P ! Qs.t.(ii) ui � 0 and vj � 0 for all (i; j) 2 P �Q,(iii) ui + vj = aij + bij for all (i; j) 2 P �Q if j = � (i). 2Let us assume for the moment that we have ui + vj < aij + bij for some edge (i; j) 2 P �Q.Obviously, �rm i and worker j 
an earn more if they leave their 
urrent partners and 
ollaboratewith ea
h other. Su
h a situation 
annot be stable and hen
e, the pair (i; j) is 
alled a blo
kingpair. We note that 
ondition (i) in the above de�nition 3.3 prevents any blo
king pairs, while
ondition (ii) ensures individual rationality.This is the way how Shapley and Shubik (1972) showed that the stable payo�s of the assign-ment game (u; v) exist and that they are the solution of a dual linear program to the primal linearprogram for maximally weighted bipartite mat
hings. Moreover, they proved the equality of the
ore9 and the set of stable out
omes as well as the latti
e stru
ture of the 
ore. Interestingly,we will see the same results in the following marriage model.3.2 Spe
ial Case II: Marriage ModelIf we set F = ; in the mixed mat
hing market model of Eriksson and Karlander (2000)10, thenwe obtain the famous marriage model of Gale and Shapley (1962). We 
onsider all men andwomen eligible for marriage in some small and isolated village. Thus, we imagine the P -agentsto be the male and the Q-agents to be the female marriage 
andidates. Obviously, the two setsP and Q are then �nite and disjoint as postulated. Ea
h man has a preferen
e list11 over all8The interest reader is referred to Dantzig (1963, p. 318).9The 
ore of a game is the set of undominated out
omes. Sin
e the set of stable out
omes in the assignmentgame is de�ned w.r.t. all kinds of 
oalitions, it trivially 
oin
ides with the 
ore.10See se
tion 3.3.11For the agents' preferen
es Gale and Shapley (1962) imposed the 
ompleteness, the transitivity and theindepen
e assumption. All mentioned assumptions are standard in e
onomi
s.



CHAPTER 3. MATCHING MARKET MODELS 11women and ea
h woman has a preferen
e list over all men. We represent these preferen
e listswith the matri
es a and b. For example, aik > ail then means that man i stri
tly prefers womank to woman l. On the other hand, woman j prefers man k to man l if bkj � blj whereas sheis indi�erent between the two men if bkj = blj . If a man and a woman both 
onsent to marryone another, then they may pro
eed to do so. The problem is to �nd a set of marriages s.t.there exists no pair (i; j) that prefers ea
h other over their 
urrent partners. We next de�ne thestability of the payo� and the out
ome.Definition: 3.4 (Payoff and Out
ome Stability) A payo� (u; v) is 
alled stable if(i) ui � aij or vj � bij for all (i; j) 2 P �Q.A stable out
ome (u; v;�) 
onsists of a stable payo� (u; v) and a bije
tive map � : P ! Qs.t.(ii) ui � 0 and vj � 0 for all (i; j) 2 P �Q;(iii) ui = aij and vj = bij for all (i; j) 2 P �Q if j = � (i). 2Let us assume for the moment that we have ui < aij and vj < bij for some edge (i; j) 2 P �Q.Obviously, man i and woman j are then better o� if they leave their 
urrent partners and marryea
h other. Su
h a situation 
annot be stable and hen
e, the pair (i; j) is 
alled a blo
king pair.Note that 
ondition (i) in the above de�nition 3.4 prevents any blo
king pairs, while 
ondition(ii) ensures individual rationality. Moreover, we note that the out
ome is 
ompletely determinedby the mat
hing, sin
e the mat
hing implies the payo� as 
an be seen from 
ondition (iii) in theabove de�nition 3.4.Gale and Shapley (1962) proved with their famous \men-propose-women-dispose" algorithm12that there is always a stable out
ome when preferen
es are stri
t. We note that the pro
edurePla
eRigidProposals of our modi�ed au
tion algorithm in se
tion 4.2 is based on the \men-propose-women-dispose" algorithm. We will see this later in example 4.7 where we solve aninstan
e of the marriage problem. Finally, Gale and Shapley (1962) proved the equality of the
ore13 and the set of stable out
omes as well as the latti
e stru
ture of the 
ore. Note that wehave en
ountered the same results in the assignment game, too. Thus, it is not very surprisingthat Roth and Sotomayor (1996) asked for an explanation of these similarities in the marriagemodel and the assignment game. Eriksson and Karlander (2000) addressed the 
hallenge of Rothand Sotomayor (1996) by giving a mixed mat
hing market model that 
ontains the marriageproblem and the assignment game as spe
ial 
ases. The next se
tion deals with their model.12Roth and Vate (1990) show that there is an alternative to the \men-propose-women-dispose" algorithm. Theystart with any mat
hing and randomly sele
t any blo
king pair to derive a new mat
hing. Roth and Vate (1990)prove that su
h a random sequen
e of mat
hings 
onverges to a stable mat
hing. Thus, they provide a family ofalternative algorithms to rea
h a stable mat
hing.13Again, the 
ore of a game is the set of undominated out
omes. The di�eren
e between the set of stableout
omes and the 
ore in the marriage model is that the 
ore is undominated w.r.t. all 
oalitions whereas the setof stable out
omes is de�ned w.r.t. 
ertain kinds of 
oalitions only: Single 
oalitions and pairs of a man and awoman.



CHAPTER 3. MATCHING MARKET MODELS 123.3 Mixed Mat
hing Model of Eriksson and Karlander (2000)In 
ontrast to the two previous models, Eriksson and Karlander (2000) simultaneously al-low for rigid and 
exible players. They then de�ne the set of rigid and 
exible edges R� =f(i; j) 2 P �Q j i 2 R or j 2 Rg and F � = f(i; j) 2 P �Q j i 2 F and j 2 Fg, respe
tively.Thus, they assume that a 
ontra
t will be �xed if at least one of the two parties prefers a�xed salary. Obviously, this is an arbitrary assumption. Note that we get F � [R� = P �Q. Ifworker j gets employed by �rm i and if (i; j) 2 R�, then we set ui = aij and vi = bij. On theother hand, if (i; j) 2 F � and �rm i hires worker j, then we set ui+ vj = aij + bij. Thus, we 
aninterpret vj as the worker's salary. This salary is �xed if the 
ontra
t is rigid. If the 
ontra
t is
exible, then the worker's wage is no longer �xed but it must be negotiated. Consequently, weonly postulate that the sum of the �rm's and the worker's bene�t equals the total produ
tivityfrom the 
ollaboration in this 
ase. Taken together, we 
onsider the 
omplete weighted bipartitegraph G = (V;E; a; b) with V = P _[Q = R _[F and the two nonnegative produ
tivity matri
esa and b. We next give the stability de�nition in the mixed mat
hing market model of Erikssonand Karlander (2000).Definition: 3.5 (Payoff and Out
ome Stability) A payo� (u; v) is 
alled stable ifthe following two 
onditions are satis�ed for every edge (i; j) 2 P �Q:(i) ui + vj � aij + bij if (i; j) 2 F �,(ii) ui � aij or vj � bij if (i; j) 2 R�.A stable out
ome (u; v;�) 
onsists of a stable payo� (u; v) and a bije
tive map � : P ! Qs.t.(iii) ui � 0 and vj � 0 for all (i; j) 2 P �Q,(iv) ui + vj = aij + bij if j = � (i) and (i; j) 2 F �,(v) ui = aij and vj = bij if j = � (i) and (i; j) 2 R�. 2Note that 
onditions (i) and (ii) in the above de�nition 3.5 prevent any blo
king pairs, while
ondition (iii) ensures individual rationality. Finally, 
onditions (iv) and (v) set the payo�s of
exible and rigid mat
hes. We would like to highlight the fa
t that the above stability de�nition3.5 spe
ialises to the stability de�nition 3.3 of the assignment game if we set R = ; and to thestability de�nition 3.4 of the marriage model in the spe
ial 
ase of F = ;. This should not 
omeas a surprise, sin
e the assignment game and the marriage model are spe
ial 
ases of the 
urrentmixed mat
hing market model of Eriksson and Karlander (2000).Finally, Eriksson and Karlander (2000) proved with a pseudo-polynomial au
tion algorithmthat there always exists a stable out
ome in the presented mixed mat
hing market model. Basedon their work, Ho
hst�attler et al. (2006) developed a polynomial au
tion algorithm that runs inO �n4� time. We will give a modi�
ation of their au
tion algorithm in se
tion 4.2.



CHAPTER 3. MATCHING MARKET MODELS 133.4 De
isive Edges Market ModelWe now give a useful generalisation of the previous mixed mat
hing market model of Erikssonand Karlander (2000). In 
ontrast to the model of Eriksson and Karlander (2000), the natureof any 
ontra
t will not depend on the 
hara
teristi
s of the players involved, but it will bedetermined solely by the edge that 
onne
ts any two players. We re
all that a 
ontra
t is
exible in the model of Eriksson and Karlander (2000) if and only if both players are 
exible.Put di�erently, a 
ontra
t is rigid if at least one of the players is rigid. Thus, the set of rigidand 
exible edges R� and F �, respe
tively, are de�ned asR� = f(i; j) 2 P �Q j i 2 R or j 2 Rg (3.2)and F � = f(i; j) 2 P �Q j i 2 F and j 2 Fg : (3.3)Let us therefore refer to the model of Eriksson and Karlander (2000) as the rigidity bias(RB) market model.Alternatively, we 
ould study a market where a 
ontra
t is rigid if and only if both playersare rigid. Put di�erently, a 
ontra
t is 
exible if at least one of the players is 
exible. Hen
e,we 
ould swit
h the logi
al operators in the de�nitions of R� and F � of the RB model in (3.2)and (3.3), respe
tively. The resulting market model is 
onsequently 
alled the 
exibility bias(FB) market model. We then haveR� = f(i; j) 2 P �Q j i 2 R and j 2 Rg (3.4)and F � = f(i; j) 2 P �Q j i 2 F or j 2 Fg : (3.5)Regardless of whether we 
onsider the RB or the FB market model, we 
learly have stri
trules that determine the set of rigid and 
exible edges R� and F �, respe
tively, by exploitingthe nature of the players involved. We 
ould make up di�erent rules for these sets and endup with various di�erent mixed mat
hing market models. However, all these \rule-based"market models are trivially spe
ial 
ases of the market model that uses no rule at all: Thede
isive edges (DE) market model. In the DE model we do not model rigid and 
exibleplayers. Instead, we dire
tly de�ne whether an edge is rigid or 
exible. Moreover, we do so inan arbitrary general way. This means that we 
an de�ne the rigidity or 
exibility of ea
h edgeindividually, i.e. 
ompletely independent of all other edges. Put di�erently, the sets of rigid and
exible edges R� and F �, respe
tively, are allowed to form an arbitrary partition of P � Q inthe DE model. However, the de�nition of R� and F � is the only di�eren
e to the RB model,whi
h means that de�nition 3.5 of a stable payo� and out
ome also applies to the 
urrent DEmodel.14 We will fruitfully exploit the generality of the DE market model in the remainder ofthe thesis: We will prove the existen
e of stable out
omes in the DE model. Clearly, all theresults that will be developed for the DE model 
arry over to the spe
ial 
ases, i.e. the RB andthe FB market model.14For the same reason, de�nition 3.5 of 
ourse applies to the FB model and any other \rule-based" marketmodel, too.



CHAPTER 3. MATCHING MARKET MODELS 14Before we move on to solve the DE model, we want to think about the rigidity and 
exibilityof 
ontra
ts and thereby show that the DE market model represents a useful generalisation ofthe mixed mat
hing market model of Eriksson and Karlander (2000). In the labour market,we mainly distinguish between private �rms and publi
 organisations. Intuitively, private �rmstend to behave more 
exibly 
ompared to publi
 organisations. On the other side of the labourmarket, we mainly dis
ern between members and non-member of labour unions15. Labour unionsgive wage re
ommendations and some agents feel obliged to follow them while others do not.16Moreover, whether an agent feels more or less obliged to follow su
h re
ommendations probablydepends on the mat
hing partner. If a private �rm hires for instan
e a prominent member oreven a leader of a labour union, then it is very likely to follow the re
ommendations. In a\rule-based" market model we 
an a

ount for this situation by de�ning the private �rm as a
exible and the prominent labour unionist as a rigid player, respe
tively, and by de�ning anedge as rigid if at least one of the players involved is rigid (i.e. adopting the RB model). If thesame private �rm (modelled as a 
exible player) 
ontra
ts with a 
ompletely unknown labourunionist (
learly a rigid player), then it is likely to 
ontra
t on the salary instead of following a�xed wage re
ommendation. However, using a \rule-based" market model, we had to adopt theRB model be
ause of the �rst edge. Thus, we 
annot model this se
ond edge appropriately as
exible. In our general DE market model, we are able to model the �rst edge as rigid and these
ond as 
exible. In fa
t, we 
an de�ne ea
h edge independently of the players involved in theDE model.Let us present another situation that no \rule-based" market model 
an a

ount for. We
onsider two 
exible workers and a �rm p o�ering these two workers a job. The �rm prin
ipallywants to 
ontra
t on the salary. This is what happens in the 
ontra
t of this �rm with worker1. Moreover, let worker 2 be a real good mat
h for the �rm p. Flexibly 
ontra
ting with himhowever, would possibly disrupt the �rm's wage-hierar
hy stru
ture. Thus, we would like tode�ne the edges (p; 1) and (p; 2) as 
exible and rigid, respe
tively. This is 
learly not possiblewith any \rule-based" market model but no problem at all for our general DE market model.We give a last example for the short
oming of any \rule-based" market model and hereby anexample illustrating the usefulness of our de
isive edges model. Let all workers in this examplebe 
exible. Note that not all labour unions are equally strong. Thus, there are minimum wagesfor some jobs while there are no minimum wages for others.17 Imagine that �rm 1 o�ers a jobto worker 1 where a minimum wage applies while there is no minimum wage applying to thejob o�er of �rm 2 to any worker. Clearly, we will have to de�ne �rm 1 as rigid and �rm 2 as
exible in a \rule-based" market model, sin
e we want the edges (1; 1) and (2; 1) to be rigidand 
exible, respe
tively. Moreover, we have to de�ne an edge as rigid if at least one of the twoplayers involved is rigid (adopting the RB model).18 Having all this set, we 
annot model thesituation where �rm 1 (rigid player) o�ers a job to worker 2 where no minimum wage applies.1915Highly riskaverse and slightly riskaverse workers would be another distin
tion that leads to the same 
on
lu-sion.16Note that this 
on
erns both sides of the labour market, sin
e a human resour
e 
hief of a 
ertain �rm 
anbe a member of a labour union or not.17Alternatively, we 
ould imagine strong wage re
ommendations for some jobs and weak wage re
ommendationsfor other jobs.18Note that all de�nitions have been ne
essary and unique.19We 
an think of several reasons why there should not be a minimum wage applying to the edge (1; 2). The



CHAPTER 3. MATCHING MARKET MODELS 15Again, the DE market model 
an des
ribe this situation appropriately, while any \rule-based"market model like the RB or the FB market model 
annot.Besides all the mentioned e
onomi
 reasons, there is of 
ourse genuine mathemati
al interestfor our generalisation.The following 
hapter is devoted to the main task of the thesis: It presents our modi�edau
tion algorithm and exploits it to prove that there exists a stable out
ome in the general DEmarket model.

job o�er of �rm 1 to worker 2 
an be di�erent from the one to worker 1, sin
e worker 1 and 2 di�er in 
apabilities,edu
ation, physi
al 
ondition, domi
ile, marital status, disablement and so on.



Chapter 4Modi�ed Au
tion Algorithm in theDE ModelEriksson and Karlander (2000) provided a pseudo-polynomial au
tion algorithm to prove theexisten
e of stable out
omes in their mixed mat
hing market model, whi
h we 
all the RB mar-ket model. Based on the ideas of Eriksson and Karlander (2000), Ho
hst�attler et al. (2006)
onstru
ted a polynomial au
tion algorithm and proved that it runs in O �n4� time where 2ndenotes the number of players. In this 
hapter we �rst give some ne
essary de�nitions. After-wards, we present a modi�
ation of the au
tion algorithm of Ho
hst�attler et al. (2006). Wethen establish its 
orre
tness in our general DE market model1 and hereby prove the existen
eof a stable out
ome in the DE market model. Moreover, we show that our modi�ed au
tionalgorithm runs in O �n4� time, too. Finally, we 
lose the 
hapter (and thereby the thesis) bygiving 
on
rete examples that show how our algorithm works and why our modi�
ations to theau
tion algorithm of Ho
hst�attler et al. (2006) are ne
essary.4.1 Some De�nitionsAs previously mentioned, we will assume that jP j = jQj = n, sin
e we 
an always introdu
edummy nodes with zero edge weights. Let � : P ! Q be a partial map and let i and j denotethe index for �rms and workers, respe
tively. If � (i) = j, then we say that �rm i proposes toworker j. A proposal is 
alled 
exible or rigid if the 
orresponding edge is 
exible or rigid.Moreover, we 
all a �rm i (a worker j) mapped if i 2 ��1 (Q) (if j 2 � (P )) and unmappedotherwise. If � (i1) = � (i2) = j with i1 6= i2, then j is 
alled doubly mapped.2 Furthermore,we re
all the de�nition of a payo� as a pair (u; v) with the ve
tors u; v 2 Rn . Moreover, we usethe following notation:PU set of unmapped �rmsQ2� set of doubly mapped workersQR set of rigidly mapped workersQ2R set of workers with at least two rigid proposals1See se
tion 3.4.2Note that any multiply mapped worker is 
ontained in this de�nition of a doubly mapped worker, i.e. a triplyor quadruply mapped worker et
. 16



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 17Furthermore, we de�nef (v;�)ij := 8>>>><>>>>: aij + bij � vj if (i; j) is a 
exible edgeaij if (i; j) is rigid and vj < bijaij if (i; j) is rigid and vj = bij and � (i) = j0 otherwise. (4.1)Obviously, f (v;�)ij denotes the possible pro�t �rm i re
eives from a 
ontra
t with the workerj given the workers' payo� ve
tor v. Note that f (v;�)ij additionally depends on the mapping �.3We de�ne the augmentation digraph G(v;�) as the dire
ted subgraph of G with the ar
 setA(v;�) := f(j; i) j j = � (i)g [ n(i; j) j j 2 D(v;�)i o ; (4.2)where D(v;�)i := �j 2 Q j f (v;�)ij = maxk f (v;�)ik � : (4.3)Note that D(v;�)i is the set of workers that maximise the potential bene�t of �rm i. Thus,D(v;�)i 
ontains the favourite partners of the �rm i given the 
urrent workers' payo� v and the
urrent mapping �. In the augmentation digraph G(v;�) we therefore have mapping ba
kwardar
s and forward ar
s that end in a favourite partner of the 
orresponding �rm. A dire
tedpath P in G(v;�) that 
onne
ts a doubly mapped worker j1 2 Q2� with another worker jl is
alled (�-) alternating. If jl is unmapped, then the path P is 
alled (�-) augmenting. Lastly,we let BFS �G(v;�); Q2�� denote a pro
edure that implements a breadth �rst sear
h4 in theaugmentation digraph G(v;�). It returns all nodes that are rea
hable in G(v;�) from the set Q2�.We are now ready to give the de�nition of our modi�ed au
tion algorithm in the next se
tion.4.2 The Modi�ed Au
tion AlgorithmWe �rst present the main part of our modi�ed au
tion algorithm.5Algorithm 4.1: Modi�ed Pro
edure Constru
tion of a Stable Out
ome1: v  02: Pla
eRigidProposals3: while Q2� 6= ; do4: while there is a �-alternating path P to j 2 (Qn� (P )) [QR do5: DisposeRigid(j)6: Alternate(P)7: Pla
eRigidProposals8: end while9: HungarianUpdate10: end while11: ui  maxj f (v;�)ij3See line 3 of the de�nition of f (v;�)ij in (4.1).4See se
tion 2.4.5Re
all that we give a modi�
ation of the au
tion algorithm of Ho
hst�attler et al. (2006). Thus, the termsmodi�ed and unmodi�ed must be understood relative to their algorithm.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 18We next give the exploited algorithms Pla
eRigidProposals and HungarianUpdate.Algorithm 4.2: Modi�ed Pro
edure Pla
eRigidProposals1: do2: for all i 2 PU do3: Propose(i)4: end for5: for all j 2 QR do6: Let i� be the favourite rigid proposal in ��1 (j)7: if vj < bi�j then8: ��1 (j) := fi�g9: vj  bi�j10: end for11: while PU 6= ;Algorithm 4.3: Unmodi�ed Pro
edure HungarianUpdate1: �P _[ �Q BFS �G(v;�); Q2��2: ui  maxj f (v;�)ij3: � minnui � f (v;�)iz j i 2 �P , z 2 Qn �Qo4: for all j 2 �Q do5: vj  vj +�6: end forLastly, we brie
y explain the exploited subroutines.Alternate(P) gets an alternating path as argument and reverses the orientation of all ar
salong this path. The map � is modi�ed s.t. it 
ontains the new ba
kward ar
s.BFS�G(v;�); Q2�� determines all nodes that are rea
hable from a doubly mapped worker in theaugmentation digraph G(v;�) exploiting a breadth �rst sear
h.DisposeRigid(j) disposes a possibly existing rigid proposal of the worker j. Thus, we unde�ne� (i), if we have a �rm i 2 ��1 (j) with (i; j) 2 R�:Propose(i) pla
es a proposal from �rm i to a worker in D(v;�)i , i.e. it 
hooses � (i) 2 D(v;�)i .If there is a rigid proposal possible, then it is favoured over 
exible proposals, i.e. if thereexists a worker j 2 D(v;�)i with (i; j) 2 R�, then i rigidly proposes to su
h a j.4.3 Corre
tness of the Modi�ed Au
tion AlgorithmBefore proving the 
orre
tness of the modi�ed au
tion algorithm 4.1, we want to develop someintuition by 
ommenting on what the algorithm mainly does. The map � always de�nes stablerelations but it is not ne
essarily inje
tive. During the algorithm we will in
rease j� (P )j until themap be
omes inje
tive. The pro
edure to in
rease j� (P )j works on the augmentation digraphG(v;�). In the beginning of the algorithm 4.1 we set the payo� of all workers at zero. Moreover,we 
hoose a map � s.t. � (i) 2 D(v;�)i for all i 2 P .6 For all rigidly mapped workers we6Note that this is possible, sin
e the set D(v;�)i is nonempty for all i 2 P .
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hoose the best rigid proposal, dispose all other proposals in the �rst pla
e and set the workers'payo� a

ordingly. Thus, there 
an be �rms that are temporarily unmapped. Su
h �rms keepproposing until every �rm is mapped. However, disposed rigid proposals will never be proposedagain. In 
ontrast to this, disposed 
exible proposals might be proposed again in 
ase theyare still optimal for the proposing �rm after the in
rease in the workers' payo�. Hen
e, thispart of the algorithm is analoguous to the famous \men-propose-women-dispose" algorithm ofGale and Shapley (1962) what 
on
erns rigid edges7: Every worker with more than one rigidproposal 
hooses the best one and disposes all others. Taken together, we ensure that there isno unmapped �rm, that every worker has at most one rigid proposal (the best rigid proposal),that the workers' payo� is updated a

ordingly and that still optimal 
exible proposals arekept. The algorithm then sear
hes for alternating paths in the augmentation digraph that leadto an unmapped or a rigidly mapped worker. If there is an alternating path to an unmappedworker, then we are able to subsequently in
rease the size of the mapping image. If there is analternating path to a rigidly mapped worker, then we 
an dispose a rigid proposal (that willnever be proposed again) without de
reasing the size of the mapping image. Finally, if there isno alternating path to an unmapped or a rigidly mapped worker, then the payo� of the workerswhi
h are rea
hable in G(v;�) from the set Q2� are in
reased by �. This leads to at least onenew ar
 in the augmentation digraph. We repeat this pro
edure until we obtain a path in theaugmentation digraph G(v;�) as desired. The algorithm �nally terminates as soon as there is nodoubly mapped worker anymore, whi
h means that the map � has be
ome inje
tive.The following lemma will be exploited in the 
orre
tness proof.Lemma 4.4We 
onsider the modi�ed au
tion algorithm 4.1 in the DE market model. Then the followingstatements hold.(i) The pro
edure Pla
eRigidProposals never de
reases j� (P )j.(ii) The payo� ve
tor v in
reases monotoni
ally.(iii) A disposed rigid proposal will never be proposed again.Proof:(i) Let us prove the �rst statement. There is only one pla
e where the pro
edure Pla
e-RigidProposals 
ould de
rease j� (P )j: Line 8. In line 8 the size of the mapping imageremains the same be
ause we dispose all proposals ex
ept for the best rigid proposal to aworker in QR.(ii) We next show that the se
ond statement holds. Initially, the workers' bene�t is set atzero. There are only two pla
es in the entire algorithm where the payo� ve
tor v 
hanges.First, we dis
uss line 9 of the pro
edure Pla
eRigidProposals. Here, we set the payo�of newly rigidly mapped workers. A rigid proposal (i; j) however, 
an only be made ifvj < bij be
ause j must be a favourite partner of i, i.e. j 2 D(v;�)i . Thus, setting vj = bij7We will see this more 
learly later in example 4.7 where we solve an instan
e of the marriage problem.
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tly in
reases the worker's bene�t. The se
ond and last pla
e is line 5 in the pro
edureHungarianUpdatewhere we stri
tly in
rease v, as � 
an be shown to be stri
tly positive.(iii) Finally, we prove the last statement. We note that the pro
edure Pla
eRigidProposalsensures that we have vj = bij for all rigid proposals (i; j). Obviously, an unmapped rigidedge (i; j) 
an only be
ome a rigid proposal if it is in the augmentation digraph, whi
hmeans that we must have vj < bij. This however, 
annot happen if the rigid edge (i; j)has already been proposed, sin
e vj in
reases monotoni
ally a

ording to part (ii).We are now ready to dis
uss the 
orre
tness of the modi�ed au
tion algorithm 4.1.Theorem 4.5 (Corre
tness of the Modified Au
tion Algorithm 4.1)The modi�ed au
tion algorithm 4.1 produ
es a stable out
ome in the DE market model.Proof:a) In all iterations of the inner while loop the modi�ed au
tion algorithm 4.1 either in
reasesj� (P )j or disposes a rigid proposal. This 
an be seen from the following two 
ases.1. If there is an alternating path P to an unmapped worker j (augmenting path), thenDisposeRigid(j) trivially does not 
hange anything. Afterwards, the subroutineAl-ternate(P) in
reases j� (P )j. Moreover, Alternate(P) possibly transforms somerigid forward ar
s into rigid proposals. Finally, the pro
edure Pla
eRigidPropos-als gets 
alled. This pro
edure might set some rigidly mapped workers' bene�t andtherefore perform some other steps, too. However, we know from part (i) of lemma 4.4that it never de
reases j� (P )j, whi
h means that size of mapping image has in
reasedafter the run of the inner while loop.2. If there is an alternating path P to a worker j in QR, then DisposeRigid(j) re-moves the 
urrent rigid proposal (i; j) of j where i 2 ��1 (j) and (i; j) 2 R�. Thisdisposed rigid edge will never be proposed again a

ording to part (iii) of lemma 4.4.Afterwards, the pro
edures Alternate(P) and Pla
eRigidProposals get 
alled.Alternate(P) leaves j� (P )j un
hanged for obvious reasons. Lastly, we know frompart (i) of lemma 4.4 that Pla
eRigidProposals never de
reases j� (P )j. Takentogether, we dispose a rigid proposal without 
hanging j� (P )j in this 
ase.b) If there is no alternating path P to a worker j 2 (Qn� (P ))[QR, then the pro
edure Hun-garianUpdate is 
alled. We will �rst show that ea
h 
all of HungarianUpdate leads toa new ar
 in the augmentation digraph. In the pro
edureHungarianUpdate we begin bydetermining the set of �rms �P and of workers �Q; whi
h are rea
hable from the set of doublymapped workers in the augmentation digraph. Thus, there is an alternating path to every�rm in �P and every worker in �Q. We therefore have ((Qn� (P )) [QR) \ �Q = ;, sin
e the
ondition of the inner while loop is not satis�ed when the pro
edure HungarianUpdategets 
alled. We then set the payo� of the �rms at the best 
urrently possible value and
ompute the quantity �. Re
all that � = minnui � f (v;�)iz j i 2 �P and z 2 Qn �Qo. Let



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 21� = ui� � f (v;�)i�z� for some i� 2 �P and z� 2 Qn �Q. The last step of the pro
edure Hun-garianUpdate is to in
rease the bene�t of all workers in �Q by �. We give the followinguseful statements.(i) If i 2 �P , then D(v;�)i � �Q.(ii) If j = � (i), then j 2 �Q if and only if i 2 �P .(iii) If j = � (i) and i 2 �P , then j =2 QR be
ause j 2 �Q a

ording to (ii).(iv) We have (i; j) 2 F � for all i 2 �P and j 2 D(v;�)i be
ause (i; � (i)) 2 F � a

ording to(iii) and be
ause of the de�nition of the subroutine Propose(i).It follows from (iv) that (i�; j) 2 F � for all j 2 D(v;�)i� . Note that we in
rease the payo�of all workers in �Q by �, whi
h means that we espe
ially in
rease the payo� of everyj 2 D(v;�)i� a

ording to (i). Thus, we obtain z� 2 D(v;�)i� and therefore the new forward ar
(i�; z�) in the augmentation digraph as 
laimed in the beginning of the 
urrent part b).This new forward ar
 might lead to an alternating path to a worker j 2 (Qn� (P )) [QRin the resulting augmentation digraph or not. Clearly, the pro
edure HungarianUpdategets 
alled as long as we do not get a desired path and with ea
h 
all we obtain a newar
. This pro
ess of always obtaining a new ar
 in the augmentation digraph8 eventuallyprovides an alternating path to j 2 Qn� (P ) [QR. Hen
e, the inner while loop 
onditionwill �nally be satis�ed.9
) Note that we know from part a) that ea
h run of the inner while loop of the main algorithm4.1 either in
reases j� (P )j or disposes a rigid proposal. Obviously, j� (P )j 
an in
rease atmost n times while we 
an dispose at most n2 rigid proposals, sin
e we know from part (iii)of lemma 4.4 that a disposed rigid proposal will never be proposed again. Moreover, wehave seen in part b) that it takes at most n2 
alls of the pro
edure HungarianUpdateuntil the next run of the inner while loop. Hen
e, the algorithm is �nite.d) It remains to show that the modi�ed au
tion algorithm 4.1 produ
es a stable out
ome. Letus de�ne �ui := maxj f (v;�)ij . The payo� (�u; v) then is stable at any stage of the algorithm,sin
e no �rm will ever form a blo
king pair. Moreover, we note that the subroutinesPropose(i) and Alternate(P) imply that j 2 D(v;�)i if j = � (i). The fa
t that �must be bije
tive at the end of the algorithm10 and the de�nition of f (v;�)ij in (4.1) thenensure that (u; v;�) satis�es 
onditions (iv) and (v) of the stability de�nition 3.5 be
ausewe set ui := maxj f (v;�)ij in the very end of the algorithm. We next prove the individualrationality of the out
ome. We have v � 0, as we initially set v at zero and sin
e it in
reasesmonotoni
ally a

ording to part (ii) of lemma 4.4. We next prove that we also have u � 0.Note that the outer while loop ensures that there is at least one doubly mapped worker,when the main part of the algorithm runs. Be
ause jP j = jQj = n and the fa
t that themapping size never de
reases (a on
e mapped worker never gets unmapped again)11, we8Obviously, we 
an obtain at most n2 new ar
s.9Note that the 
ondition of the outer while loop ensures that there is at least one doubly mapped worker. Thefa
t that ea
h �rm is mapped to at most one worker and jP j = jQj = n let us therefore 
on
lude that there mustbe at least one unmapped worker.10We will show this in the very end of the proof.11See part a) of the proof.
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an 
on
lude that we always have an unmapped worker until the very end of the algorithm.An unmapped worker j however, is of nonnegative value for �rm i be
ause we have vj = 0and therefore f (v;�)ij = aij + bij � vj � 0 if (i; j) is 
exible and f (v;�)ij = aij � 0 if (i; j)is rigid with the nonnegativity of the matri
es a and b. This 
learly holds for all �rms.Finally, we note that we set ui := maxj f (v;�)ij in the very end of the algorithm. Thus, wehave u � 0 as 
laimed. We know from part 
) that the algorithm is �nite. The 
onditionof the outer while loop of the main algorithm 4.1 ensures that there are no doubly mappedworkers in the end. This and the fa
t that we have jP j = jQj = n imply that the map� has be
ome bije
tive. Hen
e, (u; v;�) is a stable out
ome with de�nition 3.5, whi
h
ompletes the proof.4.4 Complexity of the Modi�ed Au
tion AlgorithmWe give the following theorem.Theorem 4.6 (Complexity of the Modified Au
tion Algorithm 4.1)The modi�ed au
tion algorithm 4.1 runs in O �n4� time in the DE market model.Proof:Generally, we exploit the 
omplexity proof of Ho
hst�attler et al. (2006, Theorem 1, p. 4-6)and some insights from the proof of theorem 4.5.Note that the inner while loop of the main algorithm 4.1 is exe
uted at most n2+n times, sin
ej� (P )j in
reases at most n times and be
ause there at most n2 rigid proposals to dispose.12 Thus,the number of exe
utions of the inner while loop is inO �n2�. Moreover, ea
h 
all of the pro
edureHungarianUpdate adds at least one new ar
 to the augmentation digraph. This means thatwe must have an alternating path to a worker j 2 (Qn� (P )) [QR after at most n2 
alls of thispro
edure. We use a standard implementation of the pro
edure HungarianUpdate13, whi
hensures that the 
onse
utive 
alls of the pro
edure until a desired path is found need O �n2� timein total. This in
ludes an update of the augmentation digraph by reusing the BFS-stru
turefrom the previous 
all and storing a minimum distan
e �j = minnui � f (v;�)ij j i 2 �Po froma worker j 2 Qn �Q to �P [ �Q. The quantity �j 
an be updated for ea
h worker j in O (n)time. Moreover, we have to update them ea
h time we add a node to �P [ �Q, whi
h triviallyhappens O (n) times. We 
an then 
ompute � = minj f�jg in O (n) time. After an update ofthe payo�s in line 5 of the pro
edure HungarianUpdate, we set �j  �j � �. This way,HungarianUpdate 
an be implemented to 
ontinue the BFS of its previous 
all with modi�edpayo�s. Thus, the a

umulated time spent is O �n2�. Afterwards, we have found an alternatingpath to an unmapped or rigidly mapped worker, whi
h means that we 
an then in
rease themapping size image or dispose a rigid proposal. Taken together, we get a 
omplexity of ourmodi�ed au
tion algorithm 4.1 of at least O �n4�. We will next prove that it will not be greater.To this end, it 
learly remains to show that the total 
omplexity of the inner while body isno greater than O �n4�. The total 
omplexity of the subroutines DisposeRigid(j) and Al-ternate(P) is obviously bounded by O �n2� and O �n3�, respe
tively. Lastly, the pro
edure12Re
all that a disposed rigid proposal will never be proposed again.13The interested reader is referred to Galil (1986) and Ho
hst�attler et al. (2005) for more details.
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eRigidProposals. In the �rst 
all, we must make nproposals. Note that we have to �nd a favourite partner for ea
h �rm i 2 P . We have n �rmsand n workers and hen
e, the 
omplexity is O �n2� so far. However, the sets D(v;�)i 
an 
hangeduring the algorithm, whi
h means that we have to update the augmentation digraph. Note thatthe pro
edure Pla
eRigidProposals in the inner while loop of the main algorithm 4.1 gets
alled O �n2� times. Thus, we 
an allo
ate the needed O �n2� time to update the augmentationdigraph without 
hanging the 
laimed 
omplexity of the entire modifed au
tion algorithm 4.1,whi
h 
ompletes the proof.With the 
omplexity of the modi�ed au
tion algorithm 4.1 in the DE market model, we 
learlyget an upper bound for the 
omplexity in any \rule-based" market model, sin
e these are justspe
ial 
ases. We thus 
on
lude that the modi�ed au
tion algorithm 4.1 runs in in O �n4� timein, for instan
e, the RB and the FB market model. This is a new result for the FB marketmodel but not for the RB market model, as the au
tion algorithm of Ho
hst�attler et al. (2006)also displays a 
omplexity of O �n4� in the RB market model of Eriksson and Karlander (2000).4.5 Comparison to the Algorithm of Ho
hst�attler et al. (2006)As previously mentioned, our algorithm 4.1 represents a modi�
ation of the au
tion algorithmof Ho
hst�attler et al. (2006). Ho
hst�attler et al. (2006) proved that their algorithm �nds a stableout
ome in the RB model. We have 
orre
ted some minor mistakes and we have modi�ed theiralgorithm s.t. it �nds a stable out
ome in our more general DE model. We now shortly 
ommenton these modi�
ations.The �rst modi�
ation 
on
erns the inner while loop of the main algorithm 4.1. We additionallyintrodu
e the subroutine DisposeRigid(j) to dispose the rigid proposal in 
ase we have analternating path to a worker in QR. Furthermore, we update the �rms' bene�t in the very lastline 11 of the main algorithm 4.1, sin
e we want to a

ount for the possibility that the outerwhile loop is never exe
uted.14Moreover we have 
hanged the subroutine Propose(i) to favour rigid proposals over 
exibleones. This ensures that the 
orre
tness proof works. In 
ontrast, we did not have to modify thepro
edure HungarianUpdate at all.Lastly, we have modi�ed the pro
edure Pla
eRigidProposals. First, we de�ne it as a do-while-loop instead of a while-do-loop to ensure that its body is exe
uted at least on
e. We makethis adjustment, as there 
an be workers in QR or even in Q2R when there are no unmapped�rms at all. Finally, we sele
t the best rigid proposal for all workers j 2 QR. If the payo� of su
ha worker is not updated yet, then we dispose all other proposals and 
onsequently adjust thepayo�. All disposed rigid proposals will never be proposed again as we have proved in part (iii)of lemma 4.4. Disposed 
exible proposals however, might be proposed again when we still havej 2 D(v;�)i (for (i; j) 2 F �) after the payo� in
rease of vj . This will happen in the next whileloop. But this time we will not dispose the reproposed 
exible edges, sin
e we now do not enterthe if-bran
h. Hen
e, taken together, the entire modi�ed pro
edure Pla
eRigidProposalsensures that there is no unmapped �rm and that ea
h worker has at most one rigid proposal, it14The marriage problem is an example where the outer while loop is never run. Another example is that ea
h�rm proposes to a di�erent worker in the �rst 
all of the pro
edure Pla
eRigidProposals.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 24sets the payo�s of all newly rigidly mapped workers and unmaps 
exible proposals whi
h havebe
ome unattra
tive to the proposing �rm be
ause the bene�t ve
tor v has in
reased.154.6 Some ExamplesWe 
lose the thesis by presenting three examples. In the �rst example, we want to show how ourmodi�ed au
tion algorithm 4.1 works in the spe
ial 
ase of the marriage problem. The se
ondexample addresses the same issue in the spe
ial 
ase of the assignment game. Finally, the thirdexample is devoted to a pure DE market setting that 
annot be dealt with in a RB or FB marketmodel. We demonstrate that the au
tion algorithm of Ho
hst�attler et al. (2006) breaks down inthis last example while our modi�ed au
tion algorithm 4.1 produ
es a stable out
ome as 
laimedin theorem 4.5.In all the following examples, we display all players with striped 
ir
les. Moreover, we markthe weight entries of rigid and 
exible edges in the matri
es a and b in normal and bold fa
e,respe
tively. Furthermore, we always highlight rigid edges with the letter \R" in the augmen-tation digraph and in the mapping �. Finally, we will not draw the forward ar
s to mappedworkers for expositional ease. Note that there would always be a forward ar
 (i; j) to everyba
kward (mapping) ar
 (j; i) be
ause we have j 2 D(v;�)i if j = � (i).Example 4.7We 
onsider P = fp1; p2; p3; p4; p5gQ = fq1; q2; q3; q4; q5gR� = P �Q and F � = ;We are 
learly redu
ed to the marriage problem, sin
e we only have rigid edges. The weightmatri
es a and b are given below. aij q1 q2 q3 q4 q5p1 3 2 3 2 4p2 1 3 2 3 2p3 4 2 4 1 4p4 2 3 2 3 2p5 4 4 2 1 4Table 4.1: Weight matrix a in example 4.7.15We note that we have modi�ed everything ex
ept for the lines 2 to 4 (where the unmapped �rms make theirproposals) of the pro
edure Pla
eRigidProposals 
ompared to the au
tion algorithm of Ho
hst�attler et al.(2006).



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 25bij q1 q2 q3 q4 q5p1 3 2 3 3 2p2 2 3 1 2 2p3 2 1 3 2 3p4 3 3 3 2 4p5 2 3 2 1 3Table 4.2: Weight matrix b in the example 4.7.1. First step:We set the payo� of all workers at zero and 
all the pro
edure Pla
eRigidProposals.We �rst 
ompute the potential payo�s of the �rms f (v;�)ij with (4.1) and then 
ompute thesets D(v;�)i using (4.3). We getf (v;�)ij q1 q2 q3 q4 q5p1 3 2 3 2 4p2 1 3 2 3 2p3 4 2 4 1 4p4 2 3 2 3 2p5 4 4 2 1 4 and D(v;�)p1 = fq5gD(v;�)p2 = fq2; q4gD(v;�)p3 = fq1; q3; q5gD(v;�)p4 = fq2; q4gD(v;�)p5 = fq1; q2; q5g :We generally adopt the rule of sele
ting the lowest index node in 
ase we have to 
hooseamong several.16 Hen
e, we have the map � = f1! 5; 2! 2; 3! 1; 4! 2; 5! 1g. Wethen get QR = f1; 2; 5g and Q2R = f1; 2g. Note that worker 1 has a rigid proposal from�rm 3 and 5 and that we have b31 = b51 = 2. Again, we sele
t the lowest index node. Thus,worker 1 
hooses the best rigid17 proposal (3; 1), disposes �rm 5 and we set v1 = b31 = 2(if-bran
h). Worker 2 also has two proposals. He 
hooses �rm 2, disposes �rm 4 and hen
e,we set v2 = b22 = 3 (if-bran
h). Finally, worker 5 only has one proposal of �rm 1, whi
his why we set v5 = b15 = 2 (if-bran
h). In the next iteration, the two 
urrently unmapped�rms 4 and 5 propose to workers 4 and 5, respe
tively. Worker 4 only has one propsal andwe therefore set v4 = b44 = 2 (if-bran
h). Worker 5 however, has two proposals, i.e. anold proposal from �rm 1 and a new one from �rm 5. It 
hooses the best proposal, whi
hstems from �rm 5. Thus, worker 5 
hooses �rm 5, disposes �rm 1 and we set v5 = b55 = 3(if-bran
h).18 In the next iteration, the only unmapped �rm 1 proposes to worker 1. Thisworker keeps �rm 1, disposes �rm 3 and we set v1 = b11 = 3 (if-bran
h). In the followingrun of the while-body, the only unmapped �rm 3 proposes to worker 3 who has beenunmapped before. We therefore set v3 = b33 = 3. The pro
edure Pla
eRigidProposals16Stri
tly speaking, we should have de�ned our modi�ed au
tion algorithm 4.1 with the mentioned rule toensure uniqueness, sin
e this is a ne
essary 
hara
teristi
 of any algorithm. However, we 
hose not to do so forthe sake of brevity and the 
larity of the exposition.17Of 
ourse, we only have rigid proposals in the 
urrent instan
e of the marriage problem. We will therefore nolonger mention the rigidity of edges in the remainder of the 
urrent example.18Note that we again have 1; 2 2 QR in this iteration. However, there is nothing to do here be
ause all theseworkers only have one old proposal. Their payo� is already set a

ordingly and there is no proposal to dispose.Note that the if-bran
h is not exe
uted this time and hen
e, the algorithm does not 
hange anything as desired.We will skip similar 
omments in the remainder to ease the exposition.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 26now terminates, as we do not have an unmapped �rm at the moment. Summarising, wehave� = f1! 1; 2! 2; 3! 3; 4! 4; 5! 5g D(v;�)p1 = fq1g�u = (3; 3; 4; 3; 4) D(v;�)p2 = fq2gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq3gv = (3; 3; 3; 2; 3) D(v;�)p4 = fq4gQR = f1; 2; 3; 4; 5g, Q2� = Qn� (P ) = ; D(v;�)p5 = fq5gand �gure 4.1.
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RFigure 4.1: First step in example 4.7.2. Se
ond step:The 
ondition of the outer while loop is not satis�ed, sin
e there is no doubly mappedworker. Thus, we �nally have to exe
ute line 11 of the main algorithm 4.1. We then setu1 = 3, u2 = 3, u3 = 4, u4 = 3 and u5 = 4. This terminates the algorithm. Hen
e, wehave rea
hed a stable out
ome (u; v;�) with� = f1! 1; 2! 2; 3! 3; 4! 4; 5! 5g�u = (3; 3; 4; 3; 4)u = (3; 3; 4; 3; 4)v = (3; 3; 3; 2; 3)The reader should 
onvin
e himself that the above is really a stable out
ome.19 We note thatthe pro
edure Pla
eRigidProposals essentially redu
es to the famous \men-propose-women-dispose" algorithm of Gale and Shapley (1962) in the spe
ial 
ase of the marriage problem.19See de�nition 3.5 of a stable payo� and out
ome in the DE model or alternatively, the stability de�nition 3.4in the marriage problem.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 27Example 4.8We 
onsider P = fp1; p2; p3; p4; p5gQ = fq1; q2; q3; q4; q5gR� = ; and F � = P �QWe are obviously redu
ed to the assignment game, sin
e there are only 
exible edges. Theweight matrix a = b is given below.aij q1 q2 q3 q4 q5p1 3 2 3 2:5 3p2 1:5 3 1:5 2:5 2p3 3 1:5 3 1:5 3:5p4 2:5 3 2:5 2:5 3p5 3 3:5 2 1 2Table 4.3: Weight matrix a = b in example 4.8.1. First step:We set the payo� of all workers at zero and 
all the pro
edure Pla
eRigidProposals.We �rst 
ompute the potential payo�s of the �rms f (v;�)ij with (4.1) and then 
ompute thesets D(v;�)i using (4.3). We getf (v;�)ij q1 q2 q3 q4 q5p1 6 4 6 5 6p2 3 6 3 5 4p3 6 3 6 3 7p4 5 6 5 5 6p5 6 7 4 2 4 and D(v;�)p1 = fq1; q3; q5gD(v;�)p2 = fq2gD(v;�)p3 = fq5gD(v;�)p4 = fq2; q5gD(v;�)p5 = fq2gRe
all that we sele
t the lowest index node in 
ase we have to 
hoose among several.Hen
e, we have the map � = f1! 1; 2! 2; 3! 5; 4! 2; 5! 2g. Trivially, we get QR =Q2R = ;, as we only have 
exible edges in the 
urrent assignment game example. Thus, thepro
edure Pla
eRigidProposals already terminates, as we do not have an unmapped�rm at the moment. Summarising, we have� = f1! 1; 2! 2; 3! 5; 4! 2; 5! 2g D(v;�)p1 = fq1; q3; q5g�u = (6; 6; 7; 6; 7) D(v;�)p2 = fq2gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq5gv = (0; 0; 0; 0; 0) D(v;�)p4 = fq2; q5gQR = ;, Q2� = f2g and Qn� (P ) = f3; 4g D(v;�)p5 = fq2gand �gure 4.2.
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q 5Figure 4.2: First step in example 4.8.2. Se
ond step:The 
ondition of the outer while loop is satis�ed with the doubly mapped worker 2. We donot have an alternating path P to a worker j 2 (Qn� (P ))[QR, i.e. there is no alternatingpath to an unmapped worker (no augmenting path) and we always have QR = ; in the
urrent assignment game example. Thus, the pro
edure HungarianUpdate gets 
alled.We obtain �P = f2; 4; 5g, �Q = f2; 5g and set u1 = 6, u2 = 6, u3 = 7, u4 = 6 and u5 = 7.Moreover, we get � = 1. Hen
e, we have to set v2 = 0 + 1 = 1 and v5 = 0 + 1 = 1. Notethat this payo� update yields the new ar
s (2; 4), (3; 1), (3; 3), (4; 1), (4; 3), (4; 4) and (5; 1)in the augmentation digraph. This 
ompletes the pro
edure HungarianUpdate.Summarising, we have� = f1! 1; 2! 2; 3! 5; 4! 2; 5! 2g D(v;�)p1 = fq1; q3g�u = (6; 5; 6; 5; 6) D(v;�)p2 = fq2; q4gu = (6; 6; 7; 6; 7) D(v;�)p3 = fq1; q3; q5gv = (0; 1; 0; 0; 1) D(v;�)p4 = fq1; q2; q3; q4; q5gQR = ;, Q2� = f2g and Qn� (P ) = f3; 4g D(v;�)p5 = fq1; q2gand �gure 4.3.
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CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 293. Third step:The 
ondition of the outer while loop is still satis�ed with the doubly mapped worker 2.We now have several alternating paths to an unmapped worker.20 Let us 
onsider thealternating path P = (q2; p4; q3) to the unmapped worker 3. In the inner while loop body,we �rst have to exe
ute the subroutine DisposeRigid(3). This does not 
hange anything,as the worker 3 is unmapped. Afterwards, we alternate the path P. Note that this stepin
reases the size of the mapping image as desired. Finally, the pro
edure Pla
eRigid-Proposals gets 
alled. However, nothing happens here, sin
e there is trivially no rigidlymapped worker and be
ause there is no unmapped �rm at the moment. Summarising, wenow have� = f1! 1; 2! 2; 3! 5; 4! 3; 5! 2g D(v;�)p1 = fq1; q3g�u = (6; 5; 6; 5; 6) D(v;�)p2 = fq2; q4gu = (6; 6; 7; 6; 7) D(v;�)p3 = fq1; q3; q5gv = (0; 1; 0; 0; 1) D(v;�)p4 = fq1; q2; q3; q4; q5gQR = ;, Q2� = f2g and Qn� (P ) = f4g D(v;�)p5 = fq1; q2gand �gure 4.4.
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q 5Figure 4.4: Third step in example 4.8.4. Fourth step:We next 
onsider the alternating path P = (q2; p2; q4) to the unmapped worker 4. In theinner while loop body, we �rst have to exe
ute the subroutine DisposeRigid(4). Thisdoes not 
hange anything, as the worker 4 is unmapped. Afterwards, we alternate thepath P. Note that this step in
reases the size of the mapping image as desired. Finally,the pro
edure Pla
eRigidProposals gets 
alled. However, nothing happens here, sin
ethere is trivially no rigidly mapped worker and be
ause there is no unmapped �rm at themoment. Summarising, we now have20We 
ould generally adopt the rule of sele
ting the very �rst path found in 
ase we have to 
hoose amongseveral paths to ensure the uniqueness of the algorithm. Again, we 
hose not to in
lude this in the de�nition ofour modi�ed au
tion algorithm 4.1 for the sake of brevity and the 
larity of the exposition.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 30� = f1! 1; 2! 4; 3! 5; 4! 3; 5! 2g D(v;�)p1 = fq1; q3g�u = (6; 5; 6; 5; 6) D(v;�)p2 = fq2; q4gu = (6; 6; 7; 6; 7) D(v;�)p3 = fq1; q3; q5gv = (0; 1; 0; 0; 1) D(v;�)p4 = fq1; q2; q3; q4; q5gQR = Q2� = Qn� (P ) = ; D(v;�)p5 = fq1; q2gand �gure 4.5.
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q 5Figure 4.5: Fourth step in example 4.8.5. Fifth step:The 
ondition of the inner while loop is no longer satis�ed, sin
e there is no doublymapped worker anymore and therefore no alternating path at all. Thus, we have to runthe pro
edure HungarianUpdate now. We trivially obtain �P = �Q = ; be
ause Q2� = ;.We then set u1 = 6, u2 = 5, u3 = 6, u4 = 5 and u5 = 6. This already 
ompletes thepro
edure HungarianUpdate. Note that the algorithm now leaves the outer while loopbe
ause there is no doubly mapped worker anymore. Lastly, line 11 of the main algorithm4.1 brings no further 
hange. Hen
e, the algorithm terminates and we have thereforerea
hed a stable out
ome (u; v;�) with� = f1! 1; 2! 4; 3! 5; 4! 3; 5! 2g�u = (6; 5; 6; 5; 6)u = (6; 5; 6; 5; 6)v = (0; 1; 0; 0; 1)The reader should 
onvin
e himself that the above is really a stable out
ome.21 We note thatour modi�ed au
tion algorithm 4.1 essentially redu
es to the famous Hungarian method of Kuhn(1955) in the spe
ial 
ase of the assignment game.21See de�nition 3.5 of a stable payo� and out
ome in the DE model or alternatively, the stability de�nition 3.3in the assignment game.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 31Example 4.9This last example adresses a pure DE market setting that 
annot be dealt with in a RB or FBmarket model. We demonstrate with this example that the au
tion algorithm of Ho
hst�attleret al. (2006) leads to an endless loop while our modi�ed au
tion algorithm 4.1 produ
es a stableout
ome as 
laimed in theorem 4.5.We 
onsiderP = fp1; p2; p3; p4; p5gQ = fq1; q2; q3; q4; q5gR� = ( (1; 1) ; (1; 3) ; (1; 4) ; (1; 5) ; (2; 2) ; (2; 4) ; (2; 5) ;(3; 1) ; (3; 3) ; (3; 5) ; (4; 2) ; (4; 3) ; (4; 4) ; (5; 1) ; (5; 2) )F � = f(1; 2) ; (2; 1) ; (2; 3) ; (3; 2) ; (3; 4) ; (4; 1) ; (4; 5) ; (5; 3) ; (5; 4) ; (5; 5)gThe weight matri
es a and b are given below. Re
all that we mark the weight entries of rigidand 
exible edges in normal and bold fa
e, respe
tively.aij q1 q2 q3 q4 q5p1 3 2 3 2 4p2 1 3 2 3 2p3 4 2 4 1 4p4 2 3 4 3 2p5 4 4 4 1 4Table 4.4: Weight matrix a in example 4.9.bij q1 q2 q3 q4 q5p1 3 2 3 3 1p2 2 3 1 2 2p3 2 1 3 2 3p4 2 3 1 2 2p5 2 3 3 1 3Table 4.5: Weight matrix b in the example 4.9.We next show that the above is a pure DE market setting that 
annot be dealt with in theRB and the FB market model. Let us �rst show that the example 
annot be des
ribed withthe RB market model. Note that the 
exibility of the edge (2; 1) implies that p2; q1 2 F , sin
ean edge is only 
exible in the RB model if both players involved are 
exible. The rigidity ofthe edge (1; 1) then implies that p1 is rigid. This however, means that the edge (1; 2) 
annotbe 
exible as we de�ned it in the 
urrent pure DE market example. Finally, we show that we
annot a

ount for the above example within the FB market model. To this end we note thatthe rigidity of the edge (1; 1) implies that p1; q1 2 R, sin
e an edge is only rigid in the FB modelif both players involved are rigid. The 
exibility of the edge (1; 2) then implies that q2 is 
exible.This however, means that the edge (2; 2) 
annot be rigid as we de�ned it in the 
urrent pureDE market setting.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 321. First step: Identi
al results for both algorithmsWe set the payo� of all workers at zero and 
all the pro
edure Pla
eRigidProposals.22We �rst 
ompute the potential payo�s of the �rms f (v;�)ij with (4.1) and then 
ompute thesets D(v;�)i using (4.3). We getf (v;�)ij q1 q2 q3 q4 q5p1 3 4 3 2 4p2 3 3 3 3 2p3 4 3 4 3 4p4 4 3 4 3 4p5 4 4 7 2 7 and D(v;�)p1 = fq2; q5gD(v;�)p2 = fq1; q2; q3; q4gD(v;�)p3 = fq1; q3; q5gD(v;�)p4 = fq1; q3; q5gD(v;�)p5 = fq3; q5gNote that we favour rigid proposals over 
exible ones in the pro
edure Propose(i). Hen
e,we have the map � = f1! 5; 2! 2; 3! 1; 4! 3; 5! 3g. We then get QR = f1; 2; 3; 5g.The workers 1, 2 and 5 all have only one proposal, i.e. a rigid proposal. Thus, they do notdispose any �rm and we have to set v1 = b31 = 2, v2 = b22 = 3 and v5 = b15 = 1 (always theif-bran
h). Finally, the best rigid proposal of worker 3 stems from �rm 4. Hen
e, worker3 
hooses �rm 4, disposes �rm 5 and we set v3 = b43 = 1 (if-bran
h). In the next iterationof the do-while-loop, the unmapped �rm 5 again 
exibly proposes to worker 3. The bestrigid proposal of worker 3 still stems from �rm 4 (the only rigid proposal). However, wehave already updated the payo� of worker 3 a

ordingly in the previous iteration. Hen
e,we now do not exe
ute the if-bran
h and therefore nothing happens. Note that this isexa
tly what we want our algorithm to do. A 
exible proposal should be kept if it is stilloptimal for the proposing �rm after some in
rease in the 
orresponding worker's bene�t.23The pro
edure Pla
eRigidProposals now terminates, as we do not have an unmapped�rm at the moment. Summarising, we have� = f1! 5; 2! 2; 3! 1; 4! 3; 5! 3g D(v;�)p1 = fq5g�u = (4; 3; 4; 4; 6) D(v;�)p2 = fq2; q4gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq1; q3; q5gv = (2; 3; 1; 0; 1) D(v;�)p4 = fq3gQR = f1; 2; 3; 5g, Q2� = f3g and Qn� (P ) = f4g D(v;�)p5 = fq3; q5gand �gure 4.6.22For expositional ease, we exploit the pro
edure Pla
eRigidProposals of our modi�ed au
tion algorithm4.1 in this �rst step. A 
orre
ted version of the pro
edure Pla
eRigidProposals of the au
tion algorithm ofHo
hst�attler et al. (2006) however, would lead to the same results.23Note that we still have 1; 2; 5 2 QR in this iteration besides the dis
ussed worker 3 2 QR. However, thisdoes not 
hange anything be
ause all these workers only have one proposal and sin
e we have already updatedtheir payo�s in the previous iteration. Thus, we would not 
arry out the if-bran
h and therefore nothing wouldhappen. We will skip similar 
omments in the remainder to ease the exposition.
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Figure 4.6: First step in example 4.9.2. Se
ond step with the au
tion algorithm of Ho
hst�attler et al. (2006):The 
ondition of the outer while loop is satis�ed with the doubly mapped worker 3. We
onsider the alternating path P = (q3; p5; q5) to the worker 5 2 QR, whi
h means that wehave to exe
ute the body of the inner while loop. Note that we 
annot rea
h an unmappedworker with an alternating path (no augmenting path) and that worker 5 is the only rigidlymapped worker that 
an be rea
hed with an alternating path. Moreover, there is no otheralternating path to the worker 5. In the au
tion algorithm of Ho
hst�attler et al. (2006)we �rst exe
ute the pro
edure Alternate(P). This path alternating however, does notdispose a rigid proposal as desired. Neither does it lead to a worker in Q2R. Afterwards,the pro
edure Pla
eRigidProposals gets 
alled. This pro
edure however, does not
hange anything. Summarising, we now have� = f1! 5; 2! 2; 3! 1; 4! 3; 5! 5g D(v;�)p1 = fq5g�u = (4; 3; 4; 4; 6) D(v;�)p2 = fq2; q4gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq1; q3; q5gv = (2; 3; 1; 0; 1) D(v;�)p4 = fq3gQR = f1; 2; 3; 5g, Q2� = f5g and Qn� (P ) = f4g D(v;�)p5 = fq3; q5gand �gure 4.7.
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Figure 4.7: Se
ond step with the au
tion algorithm of Ho
hst�attler et al. (2006) in example 4.9.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 343. Third step with the au
tion algorithm of Ho
hst�attler et al. (2006):We 
onsider the alternating path P = (q5; p5; q3) to the worker 3 2 QR. Note that thisworker is the only rigidly mapped worker that 
an be rea
hed by an alternating path andthat the path P is the only path available. Furthermore, we do not have an alternatingpath to an unmapped worker (no augmenting path). Thus, we 
arry out the body of theinner while loop. In the au
tion algorithm of Ho
hst�attler et al. (2006) we �rst have torun the pro
edure Alternate(P). Note that this path alternating does not dispose arigid proposal nor does it lead to a worker in Q2R as desired. Afterwards, the pro
edurePla
eRigidProposals gets 
alled. This pro
edure however, does not 
hange anything.As 
an be seen from �gure 4.8, we are exa
tly ba
k to the situation in the beginning of these
ond step. Moreover, we note that we have never had any 
hoi
e.24 Thus, the au
tionalgorithm of Ho
hst�attler et al. (2006) ne
essarily leads to an endless loop.
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Figure 4.8: Third step with the au
tion algorithm of Ho
hst�attler et al. (2006) in example 4.9.Now, we study how our modi�ed au
tion algorithm 4.1 pro
eeds after the �rst step.252.' Se
ond step with the modi�ed au
tion algorithm 4.1:The 
ondition of the outer while loop is satis�ed with the doubly mapped worker 3. We
onsider the alternating path P = (q3; p5; q5) to the worker 5 2 QR, whi
h means thatwe have to exe
ute the body of the inner while loop. Note that we 
annot rea
h anunmapped worker with an alternating path (no augmenting path) and that worker 5 isthe only rigidly mapped worker that 
an be rea
hed with an alternating path. Moreover,there is no other alternating path to the worker 5. As we have shown before the au
tionalgorithm of Ho
hst�attler et al. (2006) would now lead to an endless loop. Let us seehow the new au
tion algorithm 4.1 works at this stage. We �rst have to exe
ute theadditional pro
edure DisposeRigid(5), whi
h removes the rigid proposal (1; 5) as desired.Afterwards, the pro
edure Alternate(P) gets 
alled. This path alternating ensures thatthe size of the mapping image remains the same as 
an be seen from �gure 4.9.24Stri
tly speaking, this statement is redundant, as uniqueness is a ne
essary 
hara
teristi
 of any algorithm.However, one 
ould imagine appropriate rules that pi
k one option should there be several. From this perspe
tive,it is important that we showed that we never had a 
hoi
e, sin
e this means that the en
ountered endless loop inthe au
tion algorithm of Ho
hst�attler et al. (2006) 
annot be remedied by any rules.25Again, we 
ould show that the �rst step leads to the same results with both algorithms. We omit to provethis for the sake of brevity.
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Figure 4.9: Intermediate result in the se
ond step with the modi�ed au
tion algorithm 4.1 inexample 4.9.Finally, we have to run the pro
edure Pla
eRigidProposals. The 
urrently unmapped�rm 1 then rigidly proposes to worker 1. Worker 1 
hooses �rm 1, disposes �rm 3 and weset v1 = b11 = 3 (if-bran
h). In the next iteration the unmapped �rm 3 rigidly proposes toworker 3. The best rigid proposal of worker 3 stems from �rm 3. Thus, we unmap �rm 4and set v3 = b33 = 3 (if-bran
h). Now, the only unmapped �rm 4 rigidly proposes to worker4. Worker 4 does not have any other proposals. Hen
e, we do not dispose any proposalsand set v4 = b44 = 2 (if-bran
h). This terminates the pro
edure Pla
eRigidProposals,sin
e there are no unmapped �rms anymore. Summarising, we now have� = f1! 1; 2! 2; 3! 3; 4! 4; 5! 5g D(v;�)p1 = fq1g�u = (3; 3; 4; 3; 6) D(v;�)p2 = fq2gu = (0; 0; 0; 0; 0) D(v;�)p3 = fq3; q5gv = (3; 3; 3; 2; 1) D(v;�)p4 = fq4; q5gQR = f1; 2; 3; 4g, Q2� = Qn� (P ) = ; D(v;�)p5 = fq5gand �gure 4.10.
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Figure 4.10: Se
ond step with the modi�ed au
tion algorithm 4.1 in example 4.9.



CHAPTER 4. MODIFIED AUCTION ALGORITHM IN THE DE MODEL 363.' Third step with the modi�ed au
tion algorithm 4.1:Note that we do not have a doubly mapped worker and therefore no alternating path atall. Hen
e, the 
ondition of the inner while loop is no longer satis�ed and we have to 
arryout the pro
edure HungarianUpdate. Be
ause Q2� = ; we trivially get �P = �Q = ;.We set u1 = 3, u2 = 3, u3 = 4, u4 = 3 and u5 = 6. This already 
ompletes the pro
edureHungarianUpdate. Moreover, we leave the outer while loop be
ause there is no doublymapped worker anymore. Lastly, line 11 of the main algorithm 4.1 brings no further
hange. Thus, the algorithm terminates and we have found a stable out
ome (u; v;�) with� = f1! 1; 2! 2; 3! 3; 4! 4; 5! 5g�u = (3; 3; 4; 3; 6)u = (3; 3; 4; 3; 6)v = (3; 3; 3; 2; 1)The reader should 
onvin
e himself that the above is really a stable out
ome.26 Note thatthe above example adressed a pure DE market setting that 
annot be dealt with in a RB or FBmarket model. It is therefore no surprise that the au
tion algorithm of Ho
hst�attler et al. (2006)did not work here, as this algorithm is designed for RB markets. The example therefore showedthe ne
essity of modifying the au
tion algorithm of Ho
hst�attler et al. (2006). Finally, this lastexample demonstrated that our modi�ed au
tion algorithm 4.1 produ
ed a stable out
ome as
laimed in theorem 4.5.

26See de�nition 3.5 of a stable payo� and out
ome in the DE model.
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