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Revisions

[2021-07-18]

• Correction of definition 2.5: proper subgraph definition.

• Insertion of definition 2.23 and lemma 2.24 for usage in proof of lemma 2.25.

• Lemma 2.25:

– renaming for readability: r1,2
C to rC , rC ′

– replaced erroneous line P(r, rC) ∩ P(r, rC ′) 6= ∅ by ∀P ∈ P(r, rC) and P ′ ∈ P(r, rC ′) :

P ∩ P ′ 6= ∅

• Naming in definition 3.2 adjusted to avoid double indices.

• Theorem 4.1/4.2: Naming consistency of graph T = (V,E) established
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Chapter 1

Introduction

The general graph partitioning problem is part of many real-world applications, e.g., for logistic

problems, numerical simulations, social studies [1] [2], parallelization of computations [3] or genome

comparisons [4]. Research efforts are targeted to cover certain specializations of the problem such

as balancing problems [5][6] or k-way cut problems [7] [8].

Buchin and Selbach [7] extended the algorithm proposed by Ito et al. [9] k-way to handle cactus

trees in pseudopolynomial time. This strategy of augmenting a partitioning algorithm suitable for

trees to one suitable for cactus trees is a promising approach for other algorithms devised only for

trees.

Since the cactus tree is the first intuitive generalization of trees that admits only simple cycles in

the graph under consideration, this approach is auspicious for providing a better understanding of

graph partitioning problems for general graphs based on insights from tree partitioning.

Partitioning of trees under multiple constraints has been shown to be solvable in polynomial time

for fixed outdegree of the tree and a fixed number of constraints [10]. The polynomial running

time bound for binary trees under two constraints is especially promising for extension. In the

following, the algorithm proposed by Hamacher et al. [10] will be extended for binary cactus trees.
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Chapter 2

Preliminaries

To allow a concise investigation of the partitioning problem, a firm understanding of elementary

concepts and notation is required. The concepts presented in this chapter are only a small subset of

those required for a thorough understanding of graph theory but sufficient for subsequent studies.

A complete introduction might be found in the book ’Graph Theory’ by Diestel [11], which also

serves as the foundation for the formulation of the following definitions.

2.1 Graphs

Definition 2.1. Graph A pair G = (V, E) is called a graph when it consists of a set of vertices

V and a set of edges E ⊂ {{u, v} | u, v ∈ V }. Thus, edges are unordered pairs of vertices. 1

x1

x3

x2

x5

x4

x6

x7

x8

Figure 2.1: Example for a graph.

An example for a graph is shown in fig. 2.1. Therein, we have G = (V, E) given by

V = {x1, x2, x3, x4, x5, x6, x7}
E = {{x1, x2}, {x2, x3}, {x2, x4}, {x4, x5}, {x4, x8}, {x5, x6}, {x5, x8}, {x7, x8}}

1In general, one distinguishes between directed and undirected graphs. The definition here corresponds to an

undirected graph since the edges are unordered pairs of vertices.
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In the following, we generally assume that the graphs under consideration are non-empty, thus,

V 6= ∅.

Definition 2.2. Incident Edges For a graph G = (V, E) and an edge e ∈ E with the endpoints

u, v ∈ V we call the edge e incident in u and v. We denote the set of all incident edges on a vertex

as

E(v) := {e ∈ E|e is incident in v}

Definition 2.3. Degree of a Vertex For a given vertex v in a graph G = (V, E), we define

the degree of v as

deg(v) := |E(v)|

Definition 2.4. Neighbor of a Vertex For a given vertex v in a graph G = (V, E), we define

the neighbors of v as those which have a common incident edge

N(v) := {w ∈ V | ∃ e ∈ E s.th. e is incident in v and w}

Returning to example 2.1, we find that for vertex x4 the set of incident edges is given by

E(x4) = {{x2, x4}, {x4, x5}, {x4, x8}}

so that deg(x4) = 3. The neighbors are then given by N(x4) = {x2, x5, x8}.

Definition 2.5. Subgraph For a given graph G = (V,E), we call a graph G′ = (V ′, E′) a

subgraph of G if V ′ ⊆ V and E′ ⊆ E. We call it a proper subgraph if V ′ ⊂ V or E′ ⊂ E.

Let a subset V ′ ⊂ V of vertices be given, then we call the graph

GV ′ = (V ′,
⋃

v 6=w∈V ′
[E(v) ∩ E(w)])

the graph, which is induced by V ′.

Definition 2.6. Path Let GP = (VP , EP ) be a graph. GP is called a path if

VP = {x1, ..., xn}
EP = {{x1, x2}, ..., {xn−1, xn}}

wherein the xi are distinct. x1 and xn are called the end vertices of the path GP . The other

vertices are called inner vertices. We call such a path an x1-xn-path.

Since a path is defined completely by the sequence of vertices, we introduce an alternative notation

P = (x1, ..., xn)

Definition 2.7. Subpath Let GP = (VP , EP ) be a path. A subgraph GP ′ = (VP ′ , EP ′) of GP
is called a subpath of GP if it is a path. For P being described by

P = (x1, ..., xn)

6



the subpath P ′ can be written as

P ′ = (xm1
, ..., xmn

) for some 1 ≤ m1 ≤ m2 ≤ n

Furthermore, we represent it equivalently by P ′ = P |xm1 ,xm2
.

x1

x3

x2

x5

x4

x6

x7

x8

Figure 2.2: Example for a path (red) as subgraph to the graph of the previous example.

In fig. 2.2, a x1-x7-path is highlighted in red. It can be written as GP = (VP , EP ) with

VP = {x1, x2, x4, x8, x7}
EP = {{x1, x2}, {x2, x4}, {x4, x8}, {x8, x7}}

or alternatively as

P = (x1, x2, x4, x8, x7)

Definition 2.8. Cycle A graph GC = (VC , EC) is called a cycle if

VC = {x1, ..., xn}
EC = {{x1, x2}, ..., {xn−1, xn}, {xn, x1}}

wherein the xi are distinct and n ≥ 3. The circumference or size of the cycle is defined as

|GC | := |VC |. Similarly to the path definition, a cycle can be represented equivalently by a

sequence of vertices

C = (x1, ..., xn)

The example, which was discussed previously, contains a cycle of circumference 3 (a 3-cycle) marked

in red in fig. 2.3.

Definition 2.9. Connected Graph A graph G = (V,E) is called connected if for all vertices

s, t ∈ V there is a s-t-path, which is a subgraph to G.

Definition 2.10. Cut Vertex In a connected graph G = (V,E) a vertex v is called cut vertex

if removing the vertex and all incident edges disconnects the graph.

Definition 2.11. Cluster/Component In a graph G = (V, E) a maximal connected subgraph

G′ = (V ′, E′) is called a cluster or component of G.

7



x1

x3

x2

x5

x4

x6

x7

x8

Figure 2.3: Example for a cycle (red) as subgraph to the graph of the previous example.

Definition 2.12. Block For a graph G, a maximal connected subgraph of G, which contains

no cut vertices, is called a block.

In fig. 2.3, the graph induced by V ′ = {x4, x5, x8} is a block: None of the three vertices is a cut

vertex, as removing one does not disconnect the subgraph. Thus, the graph induced by V ′ fulfills

the condition that it does not contain cut vertices. However, extending V ′ by x7 would make x8 a

cut vertex for the induced subgraph. The same holds for x2 and x6 so that V ′ is maximal under

the condition that it does not contain any cut vertices.

2.2 Trees

Definition 2.13. Forest A graph not containing any cycles (an acyclic graph) is called a forest.

Definition 2.14. Tree A connected forest is called a tree. All vertices of degree 1 are called

leaves. The set of all trees is represented by

T = {G (V, E)|G is a tree}

As stated and proven in [11] (p.14, theorem 1.5.1),

Theorem 2.15. For a graph G = (V, E), the following are equivalent

• G is a tree

• there is a unique path connecting any two vertices u, v ∈ V

Definition 2.16. Rooted Tree If one vertex is designated as root vertex r, we call the tree a

rooted tree.

Definition 2.17. Parent/Child nodes For a given vertex v 6= r we call the (unique) neighbor

w ∈ V of v, which lies on the (unique) path from v to the root vertex r, the parent of v. We write

w = p(v). Vice versa, we call v a child of w.

8



Definition 2.18. Descendants We define the descendants of v as all nodes w ∈ V so that v

lies on the (unique) path from v to the root vertex r.

x1

x3

x2

x5

x4

x6

x7

x8

x9

x10

x11

x12

x1

x2

x3

x4

x5

x6

x7

x8 = r

x9 x10

x11 x12

Figure 2.4: Example for a rooted tree. The node, which is used as root is highlighted in red. The

right-hand side depicts the same tree as on the left but rearranged as commonly done for trees

with the root on top and leaves in the bottom.

In fig. 2.4, a tree is depicted and rearranged to a rooted tree. Deploying the definitions of parents

and children, x5, x2, x9 and x10 are children of x4.

Definition 2.19. Binary Tree A rooted tree for which all nodes have at most two children is

called a binary tree.

Definition 2.20. Subtree Given a rooted tree G = (V, E) and a designated node v ∈ V we

call the tree Tv, which is induced by v and its descendants, the subtree induced by v.

In fig. 2.4, the subtree induced by x9 is given by

Tx9 = ({x9, x11, x12}, {{x9, x11}, {x9, x12}})

2.3 Cactus Trees

Definition 2.21. Cactus Tree A graph G = (V, E) is called a cactus tree (or cactus graph,

or cactus) if it is connected and each block is either an edge or a cycle [12]. If one node is pointed

out as the designated root node, we’ll call it a rooted cactus tree. We denote the set of all cactus

trees by

C = {G = (V, E)|G is a cactus tree}

Cactus trees are defined in the literature in various ways. The stated one is one of the most

prominent definitions. However, there are some equivalent definitions: A graph G = (V, E) is

called a cactus

1. if each edge is at most part of one cycle.
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v

Figure 2.5: Rooted binary cactus tree, the root is marked in red

2. if two cycles have at most one common vertex [7].

It is easily verifiable, that these definitions are equivalent to the one given in def. 2.21. An example

of a (rooted) cactus tree is shown in fig. 2.5.

In the previous section, we stated that the path from an arbitrary vertex v to the root r is unique in

a tree. Even if we can specify a dedicated root node, not even the shortest path of a node to the root

node must be uniquely determined in a cactus graph (consider e.g. the vertex labeled ’v’ in fig. 2.5).

Definition 2.22. Cycle Root Let a rooted cactus tree G = (V, E) be given. We call for each

cycle C = (x1, ..., xn) the node rc ∈ {x1, ..., xn}, which has the shortest path to the (cactus-wide)

root, the cycle root.

We define the set of shortest paths from a node to the cactus root as follows:

Definition 2.23. Let a cactus G = (V,E) with a dedicated root node r ∈ V be given and a

node v ∈ V . Then the set of all shortest-lengths path from the cactus root r to v are denoted by

P(r, v) = {P | P is a shortest-length path from r to v}

Then, the following holds

Lemma 2.24. For a rooted cactus tree G = (V, E) with root r ∈ V and a cycle C ∈ G,

C = (x1, ..., xn) with a cycle root rC

∀P ∈ P(r, rC) ∀xi ∈ C \ {rC} : xi /∈ P (2.1)

Proof. If there would be such an xi ∈ C \ {rC} and such a P ∈ P(r, rC), then |P |r,xi
| < |P |. This

would contradict the assumption, that rC is the cycle root.

Lemma 2.25. For every cycle in a rooted cactus tree G = (V, E), the cycle root exists and is

unique.
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Proof. By definition of a cactus tree, it is connected so that the cycle root must exist. Let the

(global) root of the cactus tree be called r. Now, assume that for a given cycle C = (x1, ..., xn)

there are two cycle roots rC 6= rC ′ ∈ C. There exist two paths H1 and H2 from rC to rC ′ using

only cycle edges and vertices

C = (rC = w1, .., wm︸ ︷︷ ︸
:=H1

= rC ′ = vk, ..., v1︸ ︷︷ ︸
:=H2

= rC) m, k ∈ N : m+ k − 2 = n

Due to the reason that the path to the root is not unique, we have two sets of shortest length paths

P(r, rC) and P(r, rC ′) as defined above. It holds by the previous lemma that

∀P ∈ P(r, rC) : rC ′ /∈ P

and

∀P ′ ∈ P(r, rC ′) : rC /∈ P ′

However, there exist vertices, which are common for at least two paths (since the paths end at the

same node).

∀P ∈ P(r, rC) and P ′ ∈ P(r, rC ′) : P ∩ P ′ 6= ∅

Since the paths can be interpreted as ordered sequences of nodes from rC or rC ′ to r, there exists

the first intersection for any two of these paths. We call this first common node of paths P and

P ′ vintersect, P, P ′ .

Knowing vintersect, P, P ′ for two fixed paths

P ∈ P(r, rC) and P ′ ∈ P(r, rC ′)

the two graphs

C1
rC ,rC ′ := H1 ∪ P |rC ,vintersect

∪ P ′|rC ′,vintersect

C2
rC ,rC ′ := H2 ∪ P |rC ,vintersect

∪ P ′|rC ′,vintersect

are cycles in G, which share all edges in H1 (H2 respectively) with C. Consequentially, C is not a

simple cycle which contradicts the assumption that G is a cactus graph.

Using the definition of blocks, as given earlier, we can transform the input cactus tree to a tree by

mapping each block to a vertex and connecting them by edges.

Definition 2.26. Block Transformation The block transformation

b : C → T
G = (V,E) → G′ = (V ′, E′)

of a cactus tree with m blocks b1, ..., bm is defined by the following transformation of vertices and

edges:

• each block bi ∈ G is mapped to a vertex wi ∈ V ′. wi is then called either edge block or

cycle block depending on the nature of bi

• each vertex vi ∈ V , which is part of multiple blocks bj j ∈ J , maps to v′i ∈ V ′ and edges

{v′i, wj} ∈ E′. These nodes v′i are called connection blocks. A connection block, which

has a non-cycle parent block, is called a vertex block.

11



b1
r

b2

b3
v

b4

b5

b6

r′

w1w2

w3
w4v′

w5

w6

Figure 2.6: A rooted binary cactus tree, in which the root is marked in red (left), and the corre-

sponding tree, which is created by block-transforming the cactus tree on the left-hand side (right).

This transformation is well-defined for cactus trees (even for generally connected graphs [11], Prop.

3.1.2).

This suggests the definition of a binary cactus tree as follows

Definition 2.27. Binary Cactus Tree A cactus tree (V, E), which can be block-transformed

and rooted to be a binary tree, is called a binary cactus tree.

2.4 Problem Definition

Definition 2.28. Partitioning under Contraints, PuC Let G = (V, E) be a graph and

w : V → Nk a mapping associating k weights to each vertex. The vertex weight of v can thereby

be found via w(v). Additionally, weight constraints R ∈ Nk are given.

The objective is to find a minimal set of edges E′ ⊂ E so that the clusters V1, ..., Vn of G\E′ fulfill

the constraints

∀i ∈ {1, .., n} ∀j ∈ {1, .., k}
∑
v∈Vi

wj(v) ≤ Rj

The most relevant graph restricted problems of PuC for this work are listed in table2.1. The last

restriction yields the problem targeted in the following chapters: partitioning of binary cactus

graphs under two constraints.

Shortcut Restrictions on Graphstructure Restrictions on Constraints

TPuC Trees -

CTPuC Cactus Trees -

BCTPuC Binary Cactus Trees -

TP (target problem) Binary Cactus Trees k=2

Table 2.1: Restricting PuC to the target problem: Partitioning of binary cactus trees under two

constraints.
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For the following sections, we generally assume that k = 2. Even though the algorithm itself can

be easily extended for other k > 1, most of the results on performance do not apply in general.
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Chapter 3

Partitioning Algorithm

In the following, the partitioning algorithm of Hamacher et al. [10] for trees with two weight

functions is elucidated shortly before it is extended to cactus graphs and its correctness is proven.

3.1 Partitioning of Trees with Two Weight Functions

3.1.1 The Algorithm

The idea of the algorithm for TPuC described in [10] is to solve the problem recursively by dynamic

programming. Starting at the leaves all partitioning possibilities of a subtree rooted at some vertex

v are evaluated by using the solutions, which were previously determined for each child. This is

formalized in the following algorithm

Algorithm 3.1. Dynamic Program for Trees [10]

Input:

Let a tree (V,E) with root v0, a set of weights (w1(v), w2(v)) for all vertices v ∈ V and

restrictions (R1, R2) ∈ N be given.

Initialization:

W (v) := {w(v)} = {(w1(v), w2(v))} for all leaves v.

k := 0.

Program:

while (∃ p ∈ V : p not processed) {1

Select one such p, which has only processed children p1, ..., p∆

Process p according to 3.4 returns (W(p),j)

k = k + j

2

3

4

}5

Before we continue elucidating how to process a vertex p, a short remark on the used variables is

in order.

Firstly, k indicates the number of the currently cut edges in E′. Thus, each time we decide to

15



cut an edge, k is increased. The algorithm aims at keeping k as small as possible, which means

minimizing the number of cut edges.

Secondly, each W (v) contains a set of weight vectors. Every element of W (v) corresponds to the

weight of the cluster containing v in a valid solution of TPuC on T(v).

To achieve an optimal solution, there is no need to store all options for valid cluster weights

containing v but it is sufficient to store the ’lightest’ of those. The ’lightest’ weight vector is not a

trivial notion, since we have two weight functions

Definition 3.2. Dominating Vectors [10] Let w,w′ ∈ N2, then w dominates w′, when

w1 ≥ w′1 ∧ w2 ≥ w′2

is fulfilled. Notation: w � w′. In case w 6= w′, we say that w dominates w′ strictly and write

w � w′.

Each time when a set W (v) for some vertex v is determined, dominating weights are dropped

directly by using the following set operations:

Definition 3.3. Vector Set Operations [10] Let L1, L2 ⊆ Nq. Addition ⊕ and multiplication

⊗ are defined as

L1 ⊕ L2 = {l ∈ L1 ∪ L2 | @ l′ ∈ L1 ∪ L2 : l � l′}
L1 ⊗ L2 = {l ∈ L̄ | @ l′ ∈ L̄ : l � l′}
with L̄ = {l = l1 + l2| li ∈ Li for i = 1, 2 ∧ R � l}

(3.1)

The algorithm by Hamacher et al. [10] processes nodes as follows:

Algorithm 3.4. Node Processing

Input:

Given an vertex p with ∆ children p1, ..., p∆, which have weight sets W (p1), ...,W (p∆) assigned.

Initialization:

j := 0

Program:

W (p, 1, 0) = W (p1)⊗ {w(p)};
W (p, 1, 1) = {w(p)};
For (i = 2; i ≤ ∆; i+ +) {

1

2

3

W (p, i, 0) = W (p, i− 1, 0)⊗W (pi);

W (p, i, i) = {w(p)};
4

5

}
While (W (p,∆, j) = ∅) {

6

7

j + +;

For (i = j + 1 ..∆) {
8

9

W (p, i, j) = W (p, i− 1, j − 1)⊕ (W (p, i− 1, j)⊗W (pi));10

}11

}
Return (W (p,∆, j), j);

12
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3.1.2 The Interpretation

The algorithm 3.1shows clearly which node may be processed next. However, the node processing

itself, as described in 3.4, is not that easily comprehensible. The following paragraphs aim at

providing a better understanding of the algorithm employing an example.

p

p1; W (p1) p2; W (p2) p3; W (p3)

Figure 3.1: Initial setup for algorithm 3.4: The vertex p needs to be processed and its three children

have been processed before (and have accordingly the sets W (pi) set).

The example consists of a simple structure with four nodes. The currently processed node p has

three children p1, p2, p3 (see fig. 3.1), which have been processed previously according to 3.4.

We start by initializing the variable j, which counts the number of cuts necessary to merge and

extend the partitions of T (p1), T (p2), T (p3) by the connecting parent node p. It will be added to

the required cuts in algorithm 3.1, thus to the size of the partition.

W (p, i, j) has three parameters:

• The first parameter p highlights the currently processed node.

• The second parameter i indicates the subtree we consider at that point. For all W (p, 1, j) we

consider the tree induced by p ∪ T (p1), for W (p, 2, j) the one induced by p ∪ T (p1) ∪ T (p2),

etc. So in general, W (p, k, j) is a weight set on p considering only the tree induced by

p ∪
⋃i
l=1 T (pl).

• The third indicates the number of cuts j, which are currently considered. The node processing

algorithm terminates at the smallest j, which allows a solution obeying the restrictions.

Knowing this, we can interpret the algorithm. The beginning (ln. 1-6) could be considered an

extended initialization, as we assign only the things we know trivially as shown in fig. 3.2.

• For 0 cuts (ln 1, ln 4) we try to fit all child nodes pi and the parent node p in one cluster by

multiplying the weight sets.

• When cutting off the first i edges, we’ll be left at W (p, i, i) with p in the cluster and thus

W (p, i, i) = {w(p)}.

After ln. 6, we would have W (p,∆, j = 0) 6= ∅, if there were weights

wi ∈W (pi) ∀i ∈ {1, ..,∆}

so that

R � w(p) +

∆∑
i=1

wi

Thus, the sum of weights would suffice the restrictions and we would need no cut when merging

the solutions for p1, ..., p∆ at the node p (see fig. 3.2 in the right)
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Now, in the second part of the algorithm (ln.7-12), we increase the number of cuts, as long as there

is no valid solution. A valid solution exists as soon as W (p, ∆, j) 6= ∅. We add one cut at the

smallest possible i for which we can cut off at least j children and still add the node itself, meaning

at i = j + 1 (reflecting the iteration boundaries in ln. 9).

There are two contributions to W (p, i, j);

• W (p, i − 1, j − 1) the (j-1)-cut solution of previous considerations for i − 1 and cutting off

the node i itself

• W (p, i− 1, j)⊗W (pi) is the j-cut solution of i− 1 and merging child pi to the cluster of p.

p

p1 p2 p3

W (p, 1, 1)

W (p, 1, 0)

p

p1 p2 p3

W (p, 2, 2)

W (p, 2, 0)

pp

p1 p2 p3

W (p, 3, 3)

W (p, 3, 0)

Figure 3.2: Example for the first part of the algorithm. The considered vertex has three children,

which were processed previously. In lines 3-8 of the algorithm 3.4, the sets of weights are initialized.

The clusters, which are represented by these weight sets are colored accordingly.

W (p, 1, 0)

p

p1 p2 p3

W (p, 1, 0)

W (p, 1, 1)⊗W (p2)

p

p1 p2 p3

W (p, 2, 0)

W (p, 2, 1)⊗W (p3) =

W (p, 1, 1)⊗W (p2)⊗W (p3)

⊕ W (p, 1, 0)⊗W (p3)

Figure 3.3: First iteration of the second loop of algorithm 3.4. We assume, that W (p,∆ = 3, 0) = ∅
and start in ln. 9 of the algorithm with j = 1

W (p, 1, 0)

p

p1 p2 p3

w ∈W (p, 2, 1)

W (p, 2, 2)⊗W (p3)

w ∈W (p, 2, 1)

Figure 3.4: Second iteration of the second loop of algorithm 3.4. We assume, that W (p,∆ =

3, 1) = ∅ and start in ln. 9 of the algorithm with j = 2.

This is shown for j = 1 in the example in fig. 3.3. Starting at i = 2, we either have a 0-cut solution

for p ∪ T (p1) and cut {p, p2} (blue) or cut {p, p1} to have p and p2 in one small cluster (not yet

being said, that it suffices the restrictions). The results of i = 2 are then needed for i = 3, since

a solution with j = 1 cut for p ∪ T (p1) ∪ T (p2) with no cut at {p, p3} can yield a valid solution
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as well - this is marked, similarly to the i = 2 picture, in red and blue. Additionally, the green

indicates using the 0-cut solution of p ∪ T (p1) ∪ T (p2) and cutting {p, p3}. Two cuts require only

processing of i = j + 1 = 3, as shown in fig. 3.4.

Lines 7 -12 can be understood to compensate for the bias of the algorithm due to the arbitrary

ordering of the children.

3.1.3 Proven Results and Properties

As proven in [10], the worst-case running time for processing a node is given in this theorem:

Theorem 3.5. Let T = (V,E,w,R) be an instance of TPuC. Assume a vertex v0 has only ∆

processed children. Let p be the maximum size of a list W (v0, i, j) occurring at v0. The algorithm

3.4 at v0 can be implemented in O(∆2p3) worst-case running time.
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3.2 Extension for Cactus Trees

3.2.1 Algorithm

To extend the algorithm 3.1for cactus graphs, we consider the block-transformed tree (see initial-

ization of algorithm 3.6). Thereby it is easy to distinguish between a simple parent, as usually

encountered in a tree, and a parent node, which is part of a cycle. The algorithm introduced in the

following is inspired by the algorithm presented by Buchin and Selbach [7] for a related problem.

Algorithm 3.6. Dynamic Program for Cactus Trees

Input:

Let a cactus tree (V,E) with root v0, a set of weights (w1(v), w2(v)) for all vertices v ∈ V and

restrictions (R1, R2) ∈ N be given.

Initialization:

W (v) = {w(v)} = {(w1(v), w2(v))} for all leaves v ∈ V .

(V ′, E′) = b((V,E))

A = {v′ ∈ V ′ | v′ is leaf}; k = 0.

Program:

while (A 6= ∅) {1

Select v ∈ A
Switch (v) {

2

3

case (vertex block):4

Call algorithm 3.10 for b−1(v), returns (W (b−1(v)), kb−1(v))

Set k = k + kb−1(v)

break

5

6

7

case (cycle block):8

Preprocess the cycle b−1(v) with algorithm 3.9 a

If (v0 ∈ b−1(v) ∧ deg(v0) == 2 )

9

10

Process v0 with algorithm 3.10, returns (W (v0), kv0)

Set k = k + kv0

11

12

break13

case (edge block):14

If (v0 ∈ b−1(v) ∧ deg(v0) == 1 )15

Process v0 with algorithm 3.10, returns (W (v0), kv0)

Set k = k + kv0

16

17

break18

default:19

break20

}
A = A \ {v}
If (all children of p(v) are processed)

21

22

23

A = A ∪ {p(v)}24

}25

acorresponds to processing all cycle nodes except the cycle root node completely

20



We keep track of the active blocks, by which those blocks are meant, which have only processed

children but themselves are not processed yet, in set A. An easy observation is then

Lemma 3.7. Each node of the block-transformed graph (V ′, E′) in the algorithm 3.6is added

and removed exactly once to A.

Proof. We initialize A as a non-empty set so that the algorithm does not terminate immediately.

Each time a node is processed, it is removed from A and eventually, its unique parent node is

added. Since the block-transformed graph is a tree, no node can be added twice. By definition of

a tree, it is connected, so that each node is added to A at least once.

Before continuing, a short example shall increase the intuitive understanding of this algorithm. In

figures 3.5-3.9 the first steps of the algorithm are shown exemplarily for a small cactus tree. The

explanations are given completely in the captions. All alternatives for processing blocks, except

the special treatment for the root node are covered by this example.

b1
r

b6

b2

b3
v

b5

b4

w1w2

w4

w3

w6

w5

v′

r′

Figure 3.5: Initial State of a call to algorithm 3.6. In the left graph, the original input graph is

shown with the root highlighted in red. The already processed vertices, so all, which are leaves, are

shown as larger green nodes. In the right graph, the block transformed graph is shown. All active

blocks (blocks in set A) are highlighted in blue. There are no processed blocks yet, which shall be

shown highlighted in green in the following pictures. However, transfering the active blocks back

to the original graph, results in the three edges and the 3-cycle being active in the next processing

step.
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b1
r

b6

b2

b3
v

b5

b4

w1w2

w4

w3

w6

w5

v′

r′

Figure 3.6: After processing the active cycle block w6, so after preprocessing the cycle b6, all but

nodes of b6 except the cycle root are processed. The cycle root is not processed yet and now active

because the parent of w6, the vertex block, is active.

b1
r

b6

b2

b3
v

b5

b4

w1w2

w4

w3

w6

w5

v′

r6

Figure 3.7: Starting from fig. 3.6, we select the parent of w6, here marked as r6, to be processed

in the next iteration. It is a vertex block and will be processed according to the case in ln.4 of

algorithm 3.6.
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b1
r

b6

b2

b3
v

b5

b4

w1w2

w4

w3

w6

w5

v′

r′

Figure 3.8: After reaching the state shown in fig. 3.7, only edge blocks are active. Those are only

processed non-trivially if they are the root block. So in this case, we iterate and remove them from

A and add their parents to A. Stepping 4 iterations forward in which we process all these edge

vertices, we arrive at the state depicted here.

b1
r

b6

b2

b3
v

b5

b4

w1w2

w4

w3

w6

w5

v′

r′

Figure 3.9: After reaching the state shown in fig. 3.8, all active blocks are of the same type. They

are connection blocks but no vertex blocks. Thus, they are processed trivially in algorithm 3.6.

Three iterations later, the blocks are processed but their according vertices not. The new active

blocks are the cycle blocks w5 and w4.
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Figure 3.10: In case, the root node has only one direct child, it’ll be transformed to be part of an

edge block. The edge (left) and its corresponding block (right) are marked in blue. The child of

the root is transformed to a vertex block with two edge blocks as children. Edge blocks are again

white with black surrounding.

Figure 3.11: In this case, the root node (red) is part of a cycle and has no more children than

the two given by the cycle. In the block transformed graph (right), the root node is only part of

the cycle block which is marked in blue and needs to be processed as part of the processing of the

cycle node.

The extra treatment of the root node is a consequence of the block transformation. In the case,

which is depicted in the example, the root node is a vertex node itself. This is always the case

when the root node either has more than one simple, no-cycle child or is part of multiple cycles or

a combination of those.

In algorithm 3.6ln. 10 and ln. 15 assert that the root node is processed even if it block-transforms

not as a dedicated vertex block. In case it is only part of an edge block, as depicted in fig. 3.10, the

required special treatment is recognized by investigating whether the root node is part of an edge

block and has only one child. Having more children, the root node would occur in the pre-image

of a vertex block again. Similar argumentation yields that as part of a cycle the root might have

at most two children to need special treatment (see fig. 3.11).

The examples made it clear that by processing each block each vertex from the original graph is

processed before the algorithm terminates. This is formalized in the following lemma.

Lemma 3.8. Each node of the graph (V,E) in algorithm 3.6is processed exactly once.

Proof. We have two kinds of nodes v ∈ V , which are part of exactly one block

Vertex Type Processed

Leaf by initialization

Inner cycle node (not cycle root) in cycle preprocessing (ln. 8)

- no neighbours outside its cycle

We have two kinds of nodes v ∈ V , which are part of multiple blocks and would translate to

connection nodes in the block transformation
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Vertex Type Processed

Vertex with parent vertex transforms to a vertex block

- can have multiple vertex children processed in ln. 5

- can be cycle root for some cycles

Inner cycle node in cycle preprocessing (ln. 8)

- can have multiple vertex children

- can be cycle root for some other cycles

The root node needs to be treated more explicitely than any other vertex

Vertex Type Processed

Root connects multiple blocks processed by common logic (ln. 5)

Root is only part of one cycle processed in ln. 10-11

→ does not connect multiple blocks

Root has exactly one child processed in ln. 14-15

→ does not connect multiple blocks
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p0 p1

p3 p2

p0 p1

p3 p2

p0 p1

p3 p2

p0 p1

p3 p2

Figure 3.12: Cutting cycles displayed for a 4 node cycle rooted in p0.

3.2.2 Preprocessing Cycle Blocks

Buchin et al. [7] processed cycles in context k-(l,u)-partitioning by ’cutting open the cycles’ at

each possible edge and collecting all found solutions. An example of this procedure is shown in

fig. 3.12, analogously to the explanations in [7]. The restriction to exactly k clusters, which is not

given in the problem investigated here, makes it easy to keep or drop configurations. However, the

aim here is to find a partition that uses as few clusters as possible, which results in a demand for

a more careful investigation of these intermediate solutions.

c0

c1 c5

c2 c4

c3



(W (c5, 0), k5,0)

(W (c5, 1), k5,1)

(W (c5, 2), k5,2)

(W (c5, 3), k5,3)

(W (c5, 4), k5,4)

(W (c5, 5), k5,5)


= Γ(c5)Γ(c1) =



(W (c1, 0), k1,0)

(W (c1, 1), k1,1)

(W (c1, 2), k1,2)

(W (c1, 3), k1,3)

(W (c1, 4), k1,4)

(W (c1, 5), k1,5)



W (c0)

Figure 3.13: Ordered weight storage vectors after the cycle preprocessing. The red entry marks

the entry generated by the initial cut between c3 − c4. When we process the cycle root, we can

decide for an initial cut and store the so found weight vectors in W (c0).

Usually, as explained in subsection 3.1.1, we would store a set of weights W (v) on each vertex v.

Now, we want to preprocess the cycle with each initial opening cut (as displayed exemplarily in
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fig. 3.12) and store the information on needed cuts and resulting weight vectors in ordered arrays

of the two direct children of the cycle root. An example is shown in fig. 3.13.

The cycle preprocessing algorithm is described formally in algorithm 3.9. It is worth highlighting

beforehand that the cycle root is not processed yet, explaning the naming. The cycle root is

processed e.g. in ln. 10 of algorithm 3.6 when it is the global root as well. Another option to

process the cycle root would occur when the cycle root is part of the vertex block and thus be

processed in ln. 5. Similarly, if the cycle root is an inner node of some other cycle, it is processed

in in the preprocessing of that.

Algorithm 3.9. Dynamic Program for Cycle Preprocessing

Input:

Let a rooted cycle be given C = (VC , EC) with a designated root node c0. The size of the cycle

is denoted by Ω. The cycle nodes are numbered as (c0, c1, ..., cΩ−1). C is a subgraph of a larger

cactus graph G. All neighbors v ∈ N(ci) for i = 1, ..,Ω− 1, which are not in C, are processed.

Initialization:

Γ(c1, 0) = ((0, 0), 0)

Γ(cΩ−1,Ω) = ((0, 0), 0)

Program:

For(ω = 0 ; ω < Ω ; ω + +){1

For(i = ω + 1 ; i < Ω ; i+ +){2

Process ci3

• having children N(ci) \ VC ∪ {ci−1} using W (ci−1) = Γ(ci−1, ω) for i− 1 6= ω4

• having children N(ci) \ VC for i− 1 = ω5

returns (W (ci), kci)

Store result in Γ(ci, ω) = (W (ci), kci)

6

7

}
For(i = ω ; i > 0 ; i−−){

8

9

Process ci10

• having children N(ci) \ VC ∪ {ci+1} using W (ci+1) = Γ(ci+1, ω) for i 6= ω11

• having children N(ci) \ VC for i = ω12

returns (W (ci), kci)

Store result in Γ(ci, ω) = (W (ci), kci)

13

14

}15

}
Return (Γ(c1, ω)){ω=0,...,Ω}, (Γ(cΩ−1, ω)){ω=0,...,Ω}

16

17

Results computed for various initial cuts, which are indicated by the variable ω, are stored at each

cycle node ci in a vector Γ(ci). During initialization, the two trivial values are set: When we cut

the 0th-edge of the cycle, the first neighbor will be cut off. For sake of symmetry and to avoid

more case distinctions, we’ll set the weight set encompassing only zero-weight and not needing any

more cuts. The same holds vice versa for the Ω-th-edge and the (Ω− 1)-th node.

The outer loop of the program iterates the initial cut. For fixed ω, the edge cω − c(ω + 1) is cut.

27



Then we have two branches originating at c0 (except in the cases ω = 0 and ω = Ω), one containing

the path (c1, ..., cω) and the other (cω+1, ..., cΩ−1). The algorithm processes these paths as usually

done for trees:

• at the beginning of each iteration, we consider all ci ∈ VC as unprocessed

• since all N(ci) \ VC are processed, at the beginning of each iteration, only the nodes cω for

the first branch and comega+1 for the second branch have only processed children. Thus, we

begin at those (see for-loops in ln. 2 and 9)

• they are processed as described in the next section (see ln. 5, 12)

• the result is stored in Γ (ln.7, 14)

• in the following iteration, the next node on each path is unprocessed having only processed

children. By ln.4, 11 we use the correct weight for the in-cycle children of each node on the

path.

This can be seen more clearly by investigating an example. As shown in fig. 3.14, the cycle is cut

open iteratively on the edge between cω and cω+1. The processing order is always from the nodes

next to the cut to the cycle node.

c0

c1 c5

c2 c4

c3

ω = 0 c0

c5

c4

c3

c2

c1

ω = 1 c0

c1 c5

c4

c3

c2

ω = 2 c0

c1 c5

c4

c3

c2

processing

Figure 3.14: Left: Input cycle for the cycle preprocessing algorithm. For generality, the dashed

lines starting from c4 and c1 are to indicate that these nodes have an additional child outside the

cycle. The other figures show configurations that are considered when ω is selected as indicated in

the outer loop of the algorithm. The dashed node in ω = 0 indicates the ”imaginary” child that

does not require an additional cut and has no weight. This balances the [Γ(c1)]0 entry. In the

rightmost image, the processing order is indicated by the red arrow.
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3.2.3 Processing Vertex Nodes

In the following paragraphs, we extend the common node processing as used in algorithm 3.4 for

trees, to cope with the additional complexity encountered when treating a node, which serves as a

cycle root to one or more cycles.

Algorithm 3.10. Node Processing in Cactus Graphs

Input:

Given an vertex p with ∆ children p1, ..., p∆. Thereof, the first α children are simple vertex

children, which have weight sets W (p1), ...,W (pα) assigned. The latter ∆ − α = 2 · β children

belong to β Ω-cycles for which p is the cycle root, each having a vector (Γ(pi, ω))ω=0,..,Ω assigned.

With Γ(pi, ω) = (W (pi, ω), jpi,ω) a.

Initialization:

jmin :=∞
W := ∅

Program:

Forall(i ∈ {0, ..,Ω}β){1

Process p according to algorithm 3.4 with child node weights2

(W (p1), ...,W (pα),Γ(pα+1, i1).W,Γ(pα+2, i1).W, ...,Γ(pα+2β , iβ).W )3

returns (Wi(p), ji)

If( ji +
∑β
l=1 cclose(pα+2·l−1, pα+2·l) < jmin) {

4

5

W = Wi(p)

jmin = ji +
∑β
l=1 cclose(pα+2·l−1, pα+2·l)

6

7

}
Else if (ji +

∑β
l=1 cclose(pα+2·l−1, pα+2·l) = jmin) {

8

9

W = W ∪Wi(p)10

}11

}
If (β = 0) {

12

13

Process p according to algorithm 3.4, which directly returns (W, jmin)14

}
Return (W, jmin);

15

16

aHere, we address first and second component of the tuple via .W or .j

In the algorithm, we use the function cclose(pm, pm+1) to determine, the actual number of cuts

needed to partition the child cycle consisting of the child nodes pm, pm+1 belonging to one initial

cut i ∈ {0, ...,Ω}β :

cclose(pm, pm+1) =


0 neither pm nor pm+1 was cut

and Γ(pm, i).j + Γ(pm+1, i).j = 0

Γ(pm, i).j + Γ(pm+1, i).j + 1 else

(3.2)

This accounts for the case, where an initial cut is made, but no branch needs any more cuts and

both branches can be added to the cluster of the top node. Then the initial cut wasn’t necessary
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and may not be added.

The presented algorithm shows a rather intuitive way of evaluating the different possibilities arising

from different initial cuts of the cycles. Sadly, one can state from the first glance, that this

implementation must show bad performance for increasing Ω.

This algorithm works the same way, as the algorithm which processes nodes in trees. However,

it accounts for the additional variability coming in from child cycles but covers it in an outer

forall-loop. Therefore, an example is skipped.

3.2.4 Correctness

As shown in [10][13] the algorithm for trees fulfills the following correctness theorem

Theorem 3.11. [10] For the algorithm 3.1 using algorithm 3.4, the following holds

1. If W (p, i, j) was set in the algorithm 3.4, either by setting the trivial values in ln. 1f, ln.

4f, or while incrementing j in ln. 10, it contains all non-dominating weight vectors of the

p-containing cluster of a partition of T (p), which has j cuts at p. Additionally, for all induced

partitions on T (pl) for all children pl of p with 1 ≤ l ≤ i, the partitions are minimal.

2. If W (p) 6= ∅, it contains all non-dominating weight vectors of the p-containing cluster of a

minimal partition of T (p).

3. After each iteration of a loop in algorithm 3.1, ln. 1, the variable k contains the minimal

number of edges to cut to obtain a feasible partition.

A proof of this theorem can be found in [10] [13].

We can show a similar result for algorithm 3.6 for cactus trees, making use of the sub-algorithms

3.9, 3.10 and 3.4. We start by showing that the algorithm for cactus trees performs exactly the

same way under the assumption that the input cactus tree is a tree.

Lemma 3.12. Algorithm 3.10 reduces to one call to algorithm 3.4 when ∆ = α, thus, when a

node has no cycle nodes.

Proof. ∆ = α implies β = 0, thus the forall-loop in algorithm 3.10, ln. 1-9 is skipped and instead

a direct call to 3.4 is executed in ln. 11.

Lemma 3.13. In case, a tree serves as input for algorithm 3.6, the algorithm reduces to algorithm

3.1.

Proof. In that case, there are only vertex and edge blocks present in the block transformed graph.

The leaves are initialized as previously. All nodes except the root node are processed being vertex

blocks with algorithm 3.10, directly forwarding to algorithm 3.4 and updating k accordingly. The

root node is either processed as vertex block as well or as edge block. Both times algorithm 3.4 is

called directly. Thus, for trees, the algorithm 3.6 behaves analogously to 3.1.

Lemma 3.14. Calling algorithm 3.6 for a tree, the following holds

1. If W (p) 6= ∅, it contains all non-dominating weight vectors of the p-containing cluster of a

minimal partition of T (p).
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2. After each iteration of a loop in algorithm 3.6, ln. 1, the variable k contains the minimum

number of edges to cut to obtain a feasible partition.

Proof. Due to lemma 3.13, the algorithm performs the same way as3.1 and we can transfer the

result 3.11 directly to algorithm 3.6 when applied to trees.

Seeing that the algorithm works for the special case of trees as desired, we prove the correctness

for the case of a cactus tree following a similar strategy as [7]. First, we show that every partition

of a cycle can be found in one configuration induced by one initial cut:

Lemma 3.15. Let C be a cycle consisting of nodes v0, ..., vΩ−1, each minimal partition can be

found in the partitions computed for one of the trees created by opening the cycle with one of the

initial cuts i = 1, ...,Ω.

Proof. Assuming there is no cut needed, in the cycle, thus, we can create one cluster containing

all nodes v0, ..., vΩ−1 fulfilling the restrictions, all initial cuts cause the same resulting W (v0) at

the cycle root node. Thus, the partition can be found in the one result partition computed for all

initial cuts.

When the partition of the graph parts the cycle C in at least two clusters, there need to be at least

two cycle edges cut, one of which may be taken as the first cut. Thus, the partition can be found

in the partition created by processing the subtree after opening the cycle at some edge.

Theorem 3.16. For algorithm 3.6, the following holds

1. For a node p, which is not an inner node of a cycle and which has been processed so that

W (p) 6= ∅, W (p) contains all non-dominating weight vectors of the cluster containing p of a

minimal partition of T (p).

2. For a node p, which is an inner node of a cycle and which has been processed as part of

algorithm 3.9, Γ(p) contains a vector of sets of non-dominating weight vectors and respectively

required cuts for minimal partitions of the subtree induced by an initial cut. The initial cut

index indicates the index of the component in the vector Γ(p).

3. After each iteration of a loop in algorithm 3.6, in which no cycle remains preprocessed without

the root node being processed, the variable k contains the minimum number of edges to cut

to obtain a feasible partition for the processed subgraph.

Proof. The first two statements are given by construction. For the last statement, there are two

ways by which we can have no preprocessed loops after an iteration of the algorithm. Either we

close a cycle by processing the cycle root node v. In that case, k is updated in ln. 6, 12, or 17.

The return value of the call to algorithm 3.10 computes the number of cuts actually needed for the

cycles attached to v is computed and updated according to algorithm 3.10, ln. 7. Or the conditions

for the last statement were fulfilled in one iteration and are still fulfilled in the next iteration of

the algorithm because either a vertex node or an edge node was processed.

As a consequence, after the algorithm terminates, a minimal partition for the CTPuC under two

constraints is found.
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3.2.5 An Initial Glance at the Performance

The algorithm described so far is fairly independent of the characteristic numbers ∆, which denotes

the maximum number of children a node can have, and Ω, which describes the maximal size of a

cycle involved.

Keeping those two numbers fixed for an input graph G = (V,E) with n := |V | and assuming,

that processing one node in algorithm 3.10 ln. 3 can be described by some function p(n) (here not

necessarily polynomial), we get

• one call to algorithm 3.10 costs O(Ω∆/2 · (p(n) + ∆/2)) time

• one call to algorithm 3.9 costs O(Ω2 · (Ω∆/2 · (p(n) + ∆/2))) time

• one call to algorithm 3.6 costs O(n · Ω2 · (Ω∆/2 · (p(n) + ∆/2))) time

Lemma 3.17. The maximum number of children, which have to be processed in algorithm 3.10

during the execution of algorithm 3.6 for a binary cactus tree is limited by ∆max = 5.

Proof. The critical blocks are the connection blocks, which correspond directly to a node in the

original graph. Since it is a binary cactus graph, these connection blocks can have at most two-

block children. Each child block can add at most two-node children to the connection vertex when

the child block is a cycle block. And at most one node child, if the child block is an edge block.

During the processing of a cycle, we get an additional child on each inner cycle node, as soon as

we don’t put the cut next to the currently processed node. The various cases are displayed in fig.

3.15. This yields:

∆ ≤ 2︸︷︷︸
child 1

+ 2︸︷︷︸
child 2

+ 1︸︷︷︸
cycle neighbour

= 5 = ∆max (3.3)

Figure 3.15: Nodes in binary cactus trees can be part of up to three cycles in different configura-

tions. Either one or both child blocks are cycles and or the parent block.

That means that we would have the overall time consumption for the processing of a binary cactus

tree limited by

O(n · Ω4.5 · p(n))

Since Ω is limited trivially by O(n), we can limit it further by

O(n5.5 · p(n))
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Chapter 4

Efficiency

At the end of the last chapter, we analyzed the number of elementary calls to algorithm 3.4. The

time needed to compute one such call was hidden in p(n), dependent on the size of the graph.

This chapter aims to determine this unknown factor following an analogous procedure as presented

in [10] [13].

4.1 Efficiency Estimations for TPuC

Let an instance of TPuC be given, wherein the input tree (not necessarily binary) is T = (V, E).

Furthermore, each node v ∈ V was assigned a 2-vector of weights. The tree shall be partitioned so

that each component fulfills restrictions Ri on each weight component i.

Theorem 4.1. [10] Let T = (V, E) with weight functions w and restrictions R be an instance

of TPuC. Assume T is rooted at v0 and the maximal outdegree is ∆. Let p(n) denote the size of

the longest list W (v) that occurs during the running time of the algorithm. The algorithm can be

implemented with a worst-case running time of

O(n∆2p(n)3)

The heart of the reasoning in [10] is to limit the size of W (v) by a polynomial in the number of

vertices in the subtree rooted in v (here only given for two weight functions, as well proven in

general in [13]):

Theorem 4.2. [13] Let T = (V, E) with weight functions w and restrictions R be an instance of

TPuC, where the degree of T is bounded by ∆ and w : V → N2 and v ∈ V . The number of list

items in W (v) can be estimated by

O
(
|V (T (v))|2·(2·∆

∆−1)
)
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r

z; 0

[
12

13

]
; z1[

230

4

]
; z2[
24

1

]
; z3 y; 0

y1;

[
30

7

]
y2;

[
194

3

]
y3;

[
36

1

]
x; 0

[
63

4

]
; x1[

128

2

]
; x2[
66

1

]
; x3

v; 0

[
129

1

]
; v1 v2; w({v2}) =

[
127

3

]

Figure 4.1: Instance of a TPuC with exponential growth of stored weight vectors per node. The

weights of the nodes are noted beside the node name.

4.2 Efficiency Estimations for CTPuC

4.2.1 Estimating the Number of Stored Weight Vectors

Estimating the algorithmic complexity of the p-(l,u)-partitioning algorithm in [7] is based on lim-

iting the maximum number of stored tuples per node by O(pu), where p is the maximum number

of nodes in the cluster and u the upper weight limit.

This would be tractable for the present problem, however, the algorithm being only pseudopoly-

nomial then, the approach taken by Hamacher et al. [10] was evaluated. In the case of binary

trees with two weight functions, a strong bound on stored weight vectors was proven: O(n2), with

n = |Tv| being the number of nodes of the subtree rooted in v. It is desirable to extend this limit

to the case of (binary) cactus trees (with some modifications).

Sadly, this is not possible in general - a counterexample is given in the first subsection hinting

at a possible exponential growth of the number of stored weight vectors. A general construction

instruction is then given in the second subsection. This is followed by a subsection covering

rendering possibilities for other parameters. The special cases of cactus trees containing only

3-cycles or 4-cycles are handled in the last subsections.

4.2.2 Counterexample using 5-Cycles

The CTPuC instance shown in fig. 4.1 has the following restrictions

R =

[
255

27

]
(4.1)

It is obvious that the second restriction does not exclude any node. It assures only that no

dominating vectors occur. The nodes, which are shared between two cycles are chosen with trivial

weight, so that they may be included always.

Let’s consider cycle by cycle bottom up:
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V-Cycle The V-cycle (containing the nodes, v, v1, v2) needs to be divided to fulfill the restric-

tions, since

w( V-cycle ) = w(v1) + w(v2) + w(v) =

[
256

4

]
wherein the first component would violate the constraints.

w( V-cycle )1 = 256 > 255 = R1

Excluding exactly one node suffices to comply to the restrictions. The trivially weighted node v

can always be included in every adjoining cluster of a feasible solution.

W (v) =

{[
127

3

]
;

[
129

1

]}

X-Cycle By construction, the X-cycle allows only three nodes to be combined sufficing the

restrictions. The possible cuts are depicted in fig. 4.2

W (x) =


[
191

6

]
;︸ ︷︷ ︸

x−x1−x2

[
190

7

]
;

[
192

5

]
;︸ ︷︷ ︸

x1−x−v

[
193

4

]
;

[
195

2

]
;︸ ︷︷ ︸

x−v−x3



(a)
x

x1

x2

x3

v

(d) x

v

x3

x2

x1

(b)
x

x1 v

x2

x3

(e) x

x1 v

x3

x2

(c)
x

x1 v

x2 x3

Figure 4.2: Partitioning options for the X-cycle in the example depicted in fig. 4.1. The top node

of the subproblem is marked in red. The second cut, which is needed to fulfill the restrictions,

is shown in a double stroken blue line (if there are two double stroken lines each of them can be

selected but are not required at the same time).
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Y-Cycle The Y-cycle is constructed analogously to the X-cycle. The resulting cluster weights

at y are

W (y) =


[
224

10

]
;︸ ︷︷ ︸

y−y1−y2

[
220

14

]
;

[
221

13

]
;

[
222

12

]
;

[
223

11

]
;

[
225

9

]
;︸ ︷︷ ︸

x−y−y1

[
226

8

]
;

[
227

7

]
;

[
228

6

]
;

[
229

5

]
;

[
231

3

]
;︸ ︷︷ ︸

y3−x−y


Z-Cycle Consequentially, we have many possible clusters of various weights at z

W (z) =


[
242

17

]
;︸ ︷︷ ︸

z−z1−z2

[
232

27

]
;

[
233

26

]
;

[
234

25

]
;

[
235

24

]
;

[
236

23

]
;

[
237

22

]
;

[
238

21

]
;

[
239

20

]
;

[
240

19

]
;

[
241

18

]
;

[
243

16

]
;︸ ︷︷ ︸

y−z−z1

[
244

15

]
;

[
245

14

]
;

[
246

13

]
;

[
247

12

]
;

[
248

11

]
;

[
249

10

]
;

[
250

9

]
;

[
251

8

]
;

[
252

7

]
;

[
252

6

]
;

[
254

4

]
;︸ ︷︷ ︸

y3−x−y


In summary, we observe the following increase of the size of W (p) for this extensible setup

|W (z)| = 23

= 2 · |W (y)|+ 1

= 2 · (2 · |W (x)|+ 1) + 1

= 2 · (2 · (2 · |W (v)|+ 1) + 1) + 1

This suggests that the existence of subsequent cycles can cause exponential growth of |W (v)|.

4.2.3 Construction Instruction for Cactus Trees with Exponential Growth

of |W (v)|
To construct a cactus tree for the counterexample in the most simple way, the construction obeys

the following restrictions:

• Only directly connected cycles are contained in the construction. As a consequence, all nodes

are part of at least one cycle.

• The construction is a chain of cycles: each cycle has only one cycle child.

• All nodes, which connect two cycles (here called junction nodes), have trivial weight (0, 0).

• The junction nodes are always placed directly neighboring. That means that the root of cycle

i, called ri, and the root of cycle i-1, called ri−1, have a common incident edge (ri, ri−1)

• The bottom cycle is a 3-cycle.

We perform the construction using Ncycle 5-cycles and one 3-cycle. The number of nodes contained

in the cactus is then

n = 3 +Ncycle · 4
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wherein the second summand is the number of nodes of each cycle minus the junction node to

the subsequent cycle. This construction is extensible to use m-cycles (m > 5) resulting in a larger

base for the exponential growth of the size of the set of allowed weight vectors |W (v)|. However,

a simple extension as provided in the next subsection can be used as well to proof exponential

growth for cactus trees with larger Ω.

Step 1: Determine the Weight Scaling and the Restrictions Observe in the example the

difference in weights of x1 and x3, y1 and y3 and z1 and z3:

|w(z1)− w(z3)| =
[
12

12

]
|w(y1)− w(y3)| =

[
6

6

]
|w(x1)− w(x3)| =

[
3

3

]
In each cycle the needed difference between the weights of the introduced weights doubles, as the

number of allowed configurations does.

This required weight distance is utilized to construct a staggered weight system.

(12) 12 + 24 = 36

(6) 30 + 36 = 66

(3) 63 + 66 = 129

(2) 127 + 129 = 256

The number in brackets in the beginning of each line describes the additional weight difference

needed for each cycle from root to leaf. The calculation for the example is described, in which we

set the restriction to R1 = 255, the value of the last line decremented by 1.

In general, the staggering can be computed by

(3 · 2Ncycle−1) 3 · 2Ncycle−1︸ ︷︷ ︸
tNcycle

+ 2 · (3 · 2Ncycle−1)︸ ︷︷ ︸
sNcycle

=: sNcycle−1

(3 · 2i) (si+1 − 3 · 2i)︸ ︷︷ ︸
ti+1

+si+1 =: si for i = (Ncycle − 1), ...0

(2) (s0 − 2) +s0 =: sbase
(4.2)

Choosing R as

R =

[
sbase − 1

N + 3 · 2Ncycle

]
=

[∑i
l=0 tl + si − 1

N + 3 · 2Ncycle

]
for i ∈ {0, ..., Ncycle − 1} (4.3)

will then result in at least one node to be excluded from the cycle root cluster in each cycle.

Step 2: Treeconstruction Construct the tree bottom to top:

1. Create a 3-Cycle as follows:
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vroot,−1;

[
0

0

]
[
t0
3

][
s0

1

]

vroot,i;

[
0

0

]
vroot,i−1[

ti
1 + 3 · 2i

]

[
si
1

]
[
tbd

tbd

]

2. Construct the subsequent 5-cycles:

The entries, where the weight needs to be determined (marked by ’tbd’), need to be ’filled

by hand’. Considering the list of non-dominating weight vectors, which are collected in

|W (vroot,i−1)|, there will always be a gap in this list of weights from which a suitable weight

can be chosen. This gap is elucidated more thoroughly later.

Now, we have a chain of cycles causing an exponential increase in the number of allowed weight

vectors.

Lemma 4.3. The bottom 3-cycle has to be divided into multiple clusters to fulfill the restrictions.

Proof. By construction (eq. 4.3)

R1 = sbase − 1 = s0 + t0 − 1 < s0 + t0

holds, thus, the two non-trivial nodes in the bottom 3-cycle can not be in the same cluster in a

valid CTPuC solution.

Lemma 4.4. For the root node of the bottom 3-cycle the following holds

W (vroot,−1) =

{[
s0

1

]
;

[
t0
3

]}

Proof. Following the algorithm, there are three opening-cuts of the cycle, which need to be consid-

ered: In configuration (a), starting from bottom (l1) to the root node r, we’ll get a cut at l2 to its

(a) r

l1 l2

(b) r

l1 l2

(c) r

l1 l2

child l1, since the combination violates R1. Since r is trivially weighted, l2 and r are joined in a set.

38



Thus the weight vector (t0, 3)T is added to W (r). Analogous argumentation for (c) adds the weight

vector (s0, 1)T to W (r). (b) does not add any new information and processing of configuration (b)

creates the same result as processing (a) and (c).

The two weight vectors are non-dominating, since t0 = s0 − 2 < s0, thus[
t0
3

]
≶

[
s0

1

]
which proofs the claim.

Definition 4.5. Gap Let W be a set of non-dominating weight vectors. W has a gap if

∃ w1, w2 ∈W :

w1,1 < w2,1 − 1

w1,2 > w2,2 + 1

and
@ v ∈W \ {w1, w2}

w1,1 < v1 < w2,1

w1,2 > v2 > w2,2

A vector v ∈ N2, so that
w1,1 < v1 < w2,1

w1,2 > v2 > w2,2

is called gap weight for W 1. The set of non-dominating gap weights for W is denoted by

GAP (W ) = {v ∈ N2 | v is a gap weight for W}

Theorem 4.6. For each 5-cycle (i ∈ {0, ..., Ncycle − 1}) constructed as described previously

∀i ∈ {−1, ..., Ncycle − 1} the following holds

vroot,i+1;

[
0

0

]
vroot,i[

ti+1

1 + 3 · 2i+1

]

[
si+1

1

]

w(vgap) ∈ GAP (W (vroot,i))

1.

GAP (W (vroot,i)) 6= ∅

2.

∀w ∈W (vroot,i) :

i+1∑
j=0

tj ≤ w1 ≤
i+1∑
j=0

sj

1v = (w2,1 − 1, w2,2 + 1) would be a suitable gap weight
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3.

∀w ∈W (vroot,i) : i+ 1 ≤ w2 ≤

{
3 for i = −1

i+ 3 +
∑i−1
j=0 3 · 2j else

4.

∀w ∈W (vroot,i) : R1 − w1 < si

5.

∀w ∈W (vroot,i) : R1 − w1 > si+1

6.

|W (vroot,i)| =

{
2 · |W (vroot,i−1)|+ 1 i ≥ 0

2 i = −1

Proof. By induction.

Using the previous lemma 4.4, we find, that

GAP (W (vroot,−1)) =

{[
s0 − 1

2

]}
6= ∅ and |W (vroot,−1)| = 2

Thus for i = −1, claim 1 and 6 is proven. Claim 2 for i = −1 holds by construction:

∀w ∈W (vroot,−1) =

{[
s0 − 2

3

]
;

[
s0

1

]}
: s0 − 2 ≤ w1 ≤ s0

For claim 2 and 3 observe ∀w ∈W (vroot,−1)

(−1)+1∑
j=0

tj = t0 = 127 ≤ w1 ≤ 129 = s0 =

(−1)+1∑
j=0

sj

0 + 1 = 1 ≤ w2 ≤ 3

Claim 5 and 4 can be proven in general depending on claim 2:

Lemma 4.7. For i ∈ {0, ..., Ncycle − 1}: If claim 2 holds

∀w ∈W (vroot,i) :

i+1∑
j=0

tj ≤ w1 ≤
i+1∑
j=0

sj

then with R1 = sbase − 1 claim 4 and 5 hold

∀w ∈W (vroot,i) : R1 − w1 < si

R1 − w1 > si+1

Proof. 1.

R1 − w1 = (

i∑
l=0

tl + si − 1)− w1

≤ (

i∑
l=0

tl + si − 1)− (

i∑
l=0

tl)

= si − 1

< si
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2.

R1 − w1 = (

i∑
l=0

tl + si − 1)− w1

≥ (

i∑
l=0

tl + si − 1)− (

i∑
l=0

sl)

= si − 1−
i∑
l=0

(sl − tl)

= si − 1− (

i∑
l=1

3 · 2l−1 + 2)

= si − 3 · 1− 2i

1− 2
− 3

= si − 3 · 2i + 6

= si+1 + ti+1 − 3 · 2i + 6

> si+1

wherein the last inequality holds, since due to the construction, all ti+1 are larger than

3 · 2Ncycle .

Now, let i ∈ {0, ..., Ncycle − 1} be fixed. By hypothesis, GAP (W (vroot,)) 6= ∅ and W (vroot,i) is

given with

∀w ∈W (vroot,i) :

i+1∑
j=0

tj ≤ w1 ≤
i+1∑
j=0

sj

(a) vroot,i+1

s

vgap

t

vroot,i

(d) vroot,i+1

vroot,i

t

vgap

s

(b) vroot,i+1

s vroot,i

vgap

t

(e) vroot,i+1

s vroot,i

t

vgap

(c) vroot,i+1

s vroot,i

vgap t

Figure 4.3: Cut options for the 5-cycle in the construction rule. The two cuts in figure (c) are an

either or.

Then select wgap ∈ GAP (W (vroot,i−1)) and assign it to node v. Before considering the concrete

problem, we observe that from the cycle we can combine (independently of connecting edges) vroot,i
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or vgap with either t or s, but never with both (by hypothesis claim 4 and 5). Consequentially,

since w(vgap) > si+1 + ti+1, we can never combine vgap and vroot,i.

Processing the cycle as shown in fig. 4.3, we yield processing bottom-up

(a) t can stay connected to vroot,i. Since vgap and vroot,i in one cluster would exceed R1, we cut

the edge between vgap and t. Then no further cut is needed.

(b) vgap remains connected to t, but adding s would exceed R1. Making the cut, we can fit s and

vroot,i together with vroot,i+1 in one cluster.

(c) s stays connected to vgap and vroot,i to t, but then we need to cut off either one of the children

at vroot,i+1 and can keep one.

(d) analogously to (a)

(e) analogously to (b)

Hence,

W (vroot,i+1) = [W (vroot,i)⊗ w(t)]⊕ [W (vroot,i)⊗ w(s)]⊕ [w(vgap)⊗ w(s)]

Since the weight of vgap is somewhere in between the extreme values of W (vroot,i),

min {w1|w ∈W (vroot,i+1)}
= min {w1|w ∈W (vroot,i)}+ min {si+1, ti+1}

=

i∑
l=0

tl + ti+1 =

i+1∑
l=0

tl

and
max {w1|w ∈W (vroot,i+1)}

= max {w1|w ∈W (vroot,i)}+ max {si+1, ti+1}

=

i∑
l=0

sl + si+1 =

i+1∑
l=0

sl

proving claim 2. Similarly, we prove claim 3:

min {w2|w ∈W (vroot,i+1)}
= min {w2|w ∈W (vroot,i)}+ min {1, 1 + 3 · 2i+1}
=(i+ 1) + 1

(using the hypothesis in the last line) and

max {w2|w ∈W (vroot,i+1)}
= max {w2|w ∈W (vroot,i)}+ max {1, 1 + 3 · 2i}

=

(
i+ 3 +

i−1∑
l=0

3 · 2l
)

+ 1 + 3 · 2i

=(i+ 1) + 3 +

(i+1)−1∑
l=0

3 · 2l

To prove the existence of the gap and the size of W we make use of the following lemma
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w1

[W (vroot,i)⊗ w(t)]1 [W (vroot,i)⊗ w(s)]1

w2

[W (vroot,i)⊗ w(s)]2 [W (vroot,i)⊗ w(t)]2

Figure 4.4: Illustration of the two components of the constructed cluster weights

Lemma 4.8. The two sets W (vroot,i)⊗ w(t) and W (vroot,i)⊗ w(s) do not intersect

[W (vroot,i)⊗ w(t)] ∩ [W (vroot,i)⊗ w(s)] = ∅

and all elements are non-dominating, thus

∀wt ∈ [W (vroot,i)⊗ w(t)] ∀ws ∈ [W (vroot,i)⊗ w(s)] : wt ≶ ws

Proof. We proof the first claim by showing, that the difference between ti+1 and si+1 is larger than

the span of the first components of W (vroot,i)

max {w1 |w ∈W (vroot,i)} −min {w1 |w ∈W (vroot,i)}

=

i∑
l=0

sl −
i∑
l=0

tl =

i∑
l=0

(sl − tl)

=

i∑
l=0

3 · 2l−1 = 3
1− 2i

1− 2
+ 2

=3 · 2i − 1 = si+1 − ti+1 − 1

Thereby the first component fulfills

∀wt ∈ [W (vroot,i)⊗ w(t)] ∀ws ∈ [W (vroot,i)⊗ w(s)] : wt,1 < ws,1

Proceeding in the same way for the second component the following holds

max {w2 |w ∈W (vroot,i)} −min {w2 |w ∈W (vroot,i)}

=(i+ 3 +

i∑
l=1

3 · 2i)− (i+ 1) = 2 + 3
1− 2i

1− 2
= 3 · 2i − 1

Thus, the difference between the second components of the weights of s and t is larger than the

span of the second components of the weights in W (vroot,i). Graphically shown, we’ll have the

situation as depicted in fig. 4.4. The conclusion is that no dominating weight vector are contained

in the union of the two sets, or equivalently that

∀wt ∈ [W (vroot,i)⊗ w(t)] ∀ws ∈ [W (vroot,i)⊗ w(s)] : wt ≶ ws
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Since all weight vectors in

[W (vroot,i)⊗ w(t)] ∪ [W (vroot,i)⊗ w(s)] ∪W (vgap)⊗ w(s)

are non-dominating and the sets are pairwise disjoint we conclude claim 6.

W (vroot,i) has (by hypothesis) at least one gap at wgap so that [W (vroot,i)⊗w(t)]⊕[W (vroot,i)⊗w(s)]

has two gaps, one at wgap + ti+1 and the other one at wgap + st+1. When the latter one is filled by

the weight vector [w(vgap)⊗w(s)] the first one remains. Thus, GAP (W (vroot,i+1)) 6= ∅ (claim 1).

Given these points, all claims are proven for i+ 1 assuming that they hold for i. By induction this

holds for all i ∈ {0, .., Ncycle − 1}.

4.2.4 Construction Rendering for Cycles with more than 5 Nodes

The construction can easily be rendered for n-cycles with n > 5 by introducing trivially weighted

nodes as shown in fig. 4.5 exemplary for 9-cycles (in blue the additional nodes). using this

polynomial reduction of problems with 5-cycles to problems with n-cycles, it is clear that the

problem increases in difficulty with increasing Ω.

vroot,i+1

vroot,it

s

vgap

Figure 4.5: Extension of the example for the CTPuC with exponential growth of |W (v)| for 9

nodes per cycle.

4.2.5 General Limitations for the Number of Stored Weight Vectors

As shown in the previous subsections, we can not extend the strong limits, as given in [10], to

the case of cactus trees. However, we can formulate a general limit leading to a pseudopolynomial

algorithm similar to [7]

Lemma 4.9. Executing algorithm 3.6, the set of stored weight vectors W (v) at a node v is

limited by

|W (v)| ≤ min{R1, R2}

Proof. This limitation is the result of the elimination of dominating weight vectors. W.r.o.g.

let min{R1, R2} = R1. Assuming that |W (v)| has more than R1 elements there must be two

weight vectors w1, w2 so that w1,1 = w2,1. Thus, one weight dominates the other and can be

eliminated
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4.2.6 Special Case: Only 3-Cycles

The case in which a cactus tree contains at most 3-cycle is special because the cycle root is directly

connected to both other cycle nodes.

Lemma 4.10. Partitioning a binary cactus tree with maximal cycle size Ω = 3 with algorithm

3.6, the size of the set W (v) can be limited by

|W (v)| ∈ O(n2(2∆∆−1)

wherein n denotes the number of nodes in the subtree Tv rooted in v.

Proof. The presence of the cycle closing edge does not add any more options of creating clusters

in comparison to a simple tree, since both child nodes of a cycle root are already connected to the

cycle root. Thus, the result from theorem 4.2 can be transferred directly to the case of cactus trees

with only 3-cycles.

4.2.7 Special Case: Only 4-Cycles

For the case of 4-cycles, we consider all cut options to conclude. However, it is only relevant to

compare cut options with the same number of cuts. The vertex naming of the 4-cycle is shown in

fig. 4.6.

v

v1

v2

v3

Figure 4.6: Labelling of nodes in 4-cycles for evaluations of cut options.

The three trivial options are

• no cut at all needed - then we can pose the same limit as for the tree case since we can open

the circle at an arbitrary position and treat the root node as a normal tree node

W (v) = W (v)⊗W (v1)⊗W (v2)⊗W (v3) 6= ∅

• one cut is not possible in cycles. If one cut is sufficient, no cut is needed at all.

• four cuts needed. No two neighboring nodes of the cycle can fit in one set together according

to the restrictions R, thus

W (v)⊗W (v1) = ∅
W (v1)⊗W (v2) = ∅
W (v2)⊗W (v3) = ∅
W (v3)⊗W (v) = ∅

We’ll end up with one element in

W (v) = {w(v)}

Again, this is the same result as if we would consider a tree with the cycle cut open at an

arbitrary position.

45



v

v1

v2

v3

v

v1

v2

v3

v

v1

v2

v3

v

v1

v2

v3

Figure 4.7: Options for 3 cuts in a 4-cycle

Another easily treatable option is the one with three cuts (see figure 4.7). The top node has the

same options as in the case of a binary tree: either both children v1 and v3 are cut, or one of both

is kept. In this case, no node is in two valid partitions in one set with v so that the cycle presence

does not increase the size of W (v).

It remains to consider the case, where two cuts are needed to create a valid partition. All options

are shown in table 4.1.

W.r.o.g. we can assume that the nodes are have non-zero weights. Then we can investigate which

configurations can contribute significantly to W (v) at the same time. E.g. when the algorithm

finds configuration 1, all other valid configurations dominate the weight of configuration 1 and are

thus eliminated. When configuration 2 contributes non-trivially to W (v), configuration 1 is not

feasible since 2 would dominate 1 and, thus, would not contribute. A summary of all combination

options is shown in table 4.2.

Now, we can see the cases, which are dangerous for the growth of |W (v)|. When configurations

4 and 6, 5 and 6 or 4 and 5 occur at the same time vi for i ∈ {1, 2, 3} would be in multiple

valid partitions in one set with v. The worst case would then result in |W (v)| > 2 · |W (vi)| for

i ∈ {1, 2, 3}.
All the other configuration combinations can be mapped to the case of trees. E.g if configurations

2 and 5 occur together and contribute significantly to W (v), then configurations 1 and 3 can not

contribute significantly. This is because they would be dominated by 2 and 5 and thus contribu-

tions from configurations 2 and 5 would be eliminated from W (v). Furthermore, 4 and 6 would

dominate configuration 2 and would thus not contribute to W (v). So the relevant partition would

be equivalent to the partition of the subtree without edge (v2, v3).

In the following, we’ll reason that configurations 4, 5, and 6 can never occur at the same time

(excluding partitions where we need more than two cuts because they are not relevant to the

algorithm as long as we have a valid one with two cuts).

Case 4: Initial Cut Option (a) Here, we start with cut option (a) for case 4. This means that

the initial cut was made at edge (v1, v2) and the second cut at (v, v1). This leads to the conclusion

v

v1 v3

v2
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No 2-Cut Configuration Schematic Initial Cut Configuration Comb.

1

v

v1

v2

v3

(a)

v

v1

v2

v3 (b)

v

v3

v2

v1 -

2

v

v1

v2

v3

(a)

v

v1

v2

v3

(b)

v

v3

v2

v1 3, 5

3

v

v1

v2

v3

(a)

v

v1 v3

v2 (b)

v

v1

v2

v3 2, 4

4

v

v1

v2

v3

(a)

v

v1 v3

v2 (b)

v

v3

v2

v1 3,5,6

5

v

v1

v2

v3

(a)

v

v1

v2

v3 (b)

v

v1

v2

v3

2,4,6

6

v

v1

v2

v3

(a)

v

v1

v2

v3

(b)

v

v1 v3

v2 4,5

Table 4.1: Possible 2-cuts and corresponding initial cuts in the algorithm for four cycles. The

last column indicates, which configurations can contribute at the same time to W (v) (excluding

dominating configurations)

that
W (v)⊗ (W (v2)⊗W (v3)) 6= ∅

(W (v)⊗W (v2)⊗W (v3))⊗W (v1) = ∅

When processing the children of v, we have two options

1. W (v)⊗W (v1) = ∅ Starting from the opening cut at (v2, v3), we could not join v and v1 in the

same cluster and would need an additional cut at (v, v1). This leaves us with configuration

2, which would dominate 4. Since we assumed that configuration 4 contributes significantly,
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Configuration Dominates at v Is dominated at v by Can contribute simultaneously to W (v) with

1 - 2,3,4,5,6 -

2 1 4,6 3,5

3 1 5,6 2,4

4 1,2 - 3,5,6

5 1,3 - 2,4,6

6 1,2,3 - 4,5

Table 4.2: Relations between configurations and possible simultaneous contributions to W (v)

this can not be the case. Starting from the initial opening cut at (v, v3), we would end up

(by the same reasoning) at configuration 1. This in turn leads us to a contradiction to the

assumption that case 4 contributes significantly to W (v). So this can not be true.

2. W (v)⊗W (v1) 6= ∅ must hold, since the last option led to contradictions. Configuration 3 is

a valid partition as well and configurations 5 and 6 would dominate 3.

Summarized: Assuming that configuration 4 (created by the initial cut (a)) contributes significantly

to W (v) configurations 5 and 6 can not contribute.

Case 4: Initial Cut Option (b) Starting with we conclude, that

v

v3

v2

v1

W (v1)⊗W (v2) = ∅
W (v2)⊗W (v3)⊗W (v) 6= ∅

When considering the initial cut at (v, v3) and knowing that W (v2)⊗W (v3) 6= ∅, we would need

to cut (v1, v2). This creates the cycle partition 3 (unless more edges are cut). Since 5 and 6

dominate 3, W (v) can not contain significant contributions of 5 and 6. We can only avoid a valid

configuration 3 if we assume that

W (v1)⊗W (v) = ∅

(which would prevent cutting edges yielding configurations 5 or 6) or if we assume that the weight

vectors of configuration 3 dominate the ones of configuration 4

(W (v1)⊗W (v))⊕ (W (v3)⊗W (v2)⊗W (v)) = W (v3)⊗W (v2)⊗W (v)

which would result in possible contributions of partitions 5 and 6 to be dominating as well.

Consequentially, when processing the 4-cycle, we can not get significant contributions from config-

uration 4 at the same time as 5 or 6.

Case 5 Case 5 with the two initial cut options can be shown symmetrically to case 4.
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v

v1

v2

v3

Case 6: Initial Cut Option (a) Starting with the opening cut at (v2, v3) and getting significant

contributions to W (v) by configuration 6, we’ll need a second cut at (v1, v2) so that the following

must hold
W (v1)⊗W (v2) = ∅

W (v1)⊗W (v)⊗W (v3) 6= ∅

When we start with the initial cut at (v1, v2), we either get configuration 6 again, if

W (v2)⊗W (v3) = ∅

or else configuration 3. Since the latter alternative would cause configuration 6 to dominate and

thus its contributions being eliminated from W (v) while excluding dominating vectors, we assume

the first case. Starting with initial cuts at either (v, v1) or (v, v3), we would then need two more

cuts (at (v1, v2) and at (v2, v3)) to comply to the restrictions. These three cuts would not be

considered in our solution, since we have a valid 2-cut solution.

Case 6: Initial Cut Option (b) Analogously to option (a).

This leads us to formulate the following lemma

Lemma 4.11. Partitioning a binary cactus tree with maximal cycle size Ω = 4 with algorithm

3.6, the size of the set W (v) can be limited by

|W (v)| ∈ O(n2(2∆∆−1)

wherein n denotes the number of nodes in the subtree Tv rooted in v. ∆ is the maximum outdegree

of every ode limited by ∆max = 5.

Proof. The presence of the cycle closing edge does not add any more options for creating clusters

in comparison to a simple tree, as elucidated in the previous discussion. Thus, the result from

theorem 4.2 can be transferred directly to the case of cactus trees with only 4-cycles.
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Chapter 5

Conclusion

This generalization of the partitioning algorithm proposed by Hamacher et al. [10] to cactus trees

has been shown to be computable in polynomial time for cactus trees, which have at most 4-cycles.

Sadly, it could not be shown that the generalization results in a polynomial algorithm for all cactus

trees and is only pseudopolynomial following intuitive reasoning.

The algorithm for CTPuC is open for improvements, e.g. the similarity of solutions for cycles hints

that there might be a more efficient way of computation, storage, and processing. Especially an

extension of the method of storing possible solutions in intervals and processing those, as done in

[9] and [7], is promising to diminish the maximum size of W (v). Albeit it is unclear how the interval

view can be extended to multiple constraints the idea points to the existence of a polynomial-time

algorithm even for cactus trees with larger cycles.

An alternative to showing that the algorithm is extensible to cactus trees with larger cycles and

thus showing that the problem is solvable in polynomial time is to show that CTPuC with two

constraints is NP-complete for the cycle degree Ω ≥ 5. This requires more thorough investigations

on the basis, which was given in this thesis.
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