
Bachelor Thesis
Faculty of Mathematics and Computer Sciences

Chair of Discrete Mathematics and Optimization

Computing the Varchenko Matrix and its

Determinant for Partial Cubes

Birol Yazici (MN:9087931)

Supervisors: Prof. Dr. Winfried Hochstättler &

Sophia Keip, M.Sc. Mathematics

28. Dezember 2024

Contents

1. Abstract 5

2. Course of investigation 5

3. Historic context 6

4. COMs 7

5. Prerequisites and motivation 11

5.1. Cubes and forbidden minors . 11

5.2. Varchenko matrix . 17

5.3. Motivation . 20

6. Overview and analysis of code 21

6.1. Implementation . 21

6.2. Input-output structure . 22

6.3. Programm details . 23

6.3.1. Block1: Establishing the equivalence classes in python . . . 24

6.3.2. Block 2: Creating the varchenko matrix in python 26

6.4. Determinant calculation . 27

6.5. Scalability . 28

7. Calculations 29

8. Summary, results and conclusion 32

Appendices 34

A. Python Code: Calc_VM.py 34

2

B. Python Code: PartialCube.py 48

C. Maple Code 71

References 74

3

List of abbreviations

PC Partial Cube

OM Oriented Matroid

COM Complex of Oriented Matroid

VD Varchenko Determinant

4

1. Abstract

The following thesis is motivated by the paper named "The Signed Varchenko De-

terminant for Complexes of Oriented Matroids" by Hochstättler, Keip and Knauer

who established that the determinant of the varchenko matrix for so called com-

plexes of oriented matroids (COMs) has a nice factorization1. COMs represent a

subset of partial cubes. Therefore the question is posed whether there are other

classes of partial cubes not being COMs with a nice factorization. This work con-

tributes to answering this question by programmatically calculating the varchenko

determinant for a special class of partial cubes which can be considered as a bridge

between partial cubes and complexes of oriented matroids2.

2. Course of investigation

After putting this research question into a historic context in section 3 the so called

complexes of oriented matroids are defined in chapter 4 and a graphical example

is given to explain them. Then in part 5 all the theoretical requirements which are

considered non-standard and essential in understanding this thesis are introduced.

With this theoretical basis the research question which has been touched in the

abstract can be specified exactly. In section 6 the program which solves this

problem is introduced. This happens on one hand structurally in order to explain

the program on a high level and clarify how it works from an input- as well as

output-perspective. Then where it seems necessary complex details will be pointed

out to ensure transparency. Furthermore performance considerations in setting up

and running the calculation will be touched. Finally in chapter 8 the results will

be represented and the posed question will be answered.

1See [5].
2The determinant of the so called varchenko matrix is also referred to as varchenko determinant.

5

3. Historic context

The publications of Hassler Whitney and Takeo Nakasawa3 in the 1930s are consid-

ered as the official starting points for matroids. With the oriented matroid (OM)

which is a special type of matroid the historic categorization is more difficult.

However the main originators are considered to be Robert Bland, Jim Lawrence,

Jon Folkman and Michel Las Vergnas. The time frame regarding the development

of OMs falls in the 60s and 70s. In 1971 Graham and Pollak brought with their

study of interconnection networks so called partial cubes to the academic scene4.

In 2015 so called complexes of oriented matroids (COMs) were introduced by Ban-

delt, Chepoi and Knauer5. Knauer and Marc published then in 2019 a paper which

showed a link between COMs and PCs6. This link is a special kind of PC a so

called forbidden minor which allows to distinguish between COMs and PCs.

To complete the picture the so called varchenko matrix which has been developed

in the year 1993 has to be brought up7. There have been a number of publications

which analyze the determinant of this concept for a variety of objects. In particular

Hochstättler and Welker as well as Hochstättler, Keip and Knauer specified in

2018 and 2023 this particular determinant for OMs and COMs8. This thesis now

picks up on the special kind of PCs proposed by Knauer and Marc by calculating

programmatically the determinant of the varchenko matrices for these PCs.

The depiction of the timeline shows that this whole area of matroids and related

concepts is a relatively young branch of mathematics. However it proves to be

an incredibly rich field which can be seen in the many alternative ways to define

3The contributions of Nakasawa only found more than 50 years after his death scientific appre-
ciation, see [1]

4Although partial cubes are usually neither part of undergraduate- nor graduate-level courses
they constitute a rich field of research with many applications, see [3] for further information.

5See [11]
6See [4]
7See [12]
8See [5] and [6]

6

these concepts and subsequently the many areas it is applied like combinatorics,

topology, algebraic geometry, operations research and computer science to name a

few.

4. COMs

In this section COMs are introduced. In order to establish the framework for COMs

we agree that E represents a finite non-empty (ground) set and L ⊆ {−, 0,+}E is

defined as a set of sign vectors on E. For the vectors X, Y ∈ L the operation of

composition and separation is defined as follows

Definition 1 (Composition). For X, Y ∈ L the operation X ◦ Y is defined by

(X ◦Y)e = Ye if Xe = 0 and (X ◦ Y)e = Xe if Xe 6= 0 ∀ e ∈ E.

Definition 2 (Separation). For X, Y ∈ L the separator S(X,Y) is defined by

S(X,Y) = {e ∈ E : Xe = −Ye 6= 0 }.

With these definitions the following four axioms can be depicted.

Axiom 1 (Composition (C)).

(X ◦ Y)e ∈ L ∀ X,Y ∈ L.

Axiom 2 (Symmetry (S)).

−L = {−X : X ∈ L} = L.

7

Axiom 2 means that L is closed under sign reversal.

Axiom 3 (Face symmetry (FS)).

(X ◦ −Y)e ∈ L for all X,Y ∈ L.

Axiom 4 (Strong elimination (SE)).

For each pair X,Y ∈ L and for each e ∈ S(X,Y) there is a Z ∈ L with Ze = 0

and Zf = (X ◦ Y)f for all f ∈ E\S(X, Y).

With the help of these axioms oriented matroids and complexes of oriented ma-

troids can be defined9.

Definition 3 (OMs and COMs). Assuming the groundset E and the system of

sign vectors L thenM = (E, L) represents an OM if L fulfills the axioms (C),(S)

and (SE). It represents a COM if L fulfills the axioms (FS) and (SE).

An alternative way to define OMs is by demanding that L satisfies (FS),(SE) as

well as 0 ∈ L which shows that COMs are a generalization of OMs because (FS)

implies (C) and 0 in combination with (FS) results in (S).

In order to better grasp a COM we will use a special case which can be visualized

and is known as realizable COM. It assumes that E is an arrangement of hyper-

planes of Rd and C is an open convex set which intersects all hyperplanes to avoid

9In chapter 7 these axioms are used to establish the existence of certain vectors in a COM

8

redundancies. By restricting the arrangement to the convex set a realizable COM

results consisting of sign vectors.

Furthermore we restrict ourselves to so called simplicity which requires the axioms

(N1) and (N2) to hold.

(N1) ∀ e ∈ E: {Xe| X ∈ L} = {+,-,0};

(N2) ∀ e 6= f ∈ E: {XeXf | X ∈ L} = {+,-,0}.

The COMM = (E, L) which satisfies (N1) and (N2) is called simple. Under this

setting the sign vectors in L with full support represent the topes. A simple COM

is determined by its tope graph10. Tope graphs are better known as region graphs

but within the context of OMs the term tope has prevailed. In a tope graph the

vertices represent regions or sign vectors which have no zero entries. A certain

edge between two vertices exists if the tope only differ in exactly one sign. The

sign vector in the tope graph connecting these two vertices has one and only one

zero entry. This leads to the following definition.

Definition 4 (Tope graph). Given an arrangement A and its regions R(A) the

tope graph T(A) has R(A) as the set of vertices. The set of edges constitute the

pairs of adjacent regions in R(A).

We start by assuming an arrangement of hyperplanes which can be seen in figure 1.

An orientation is arbitrarily given meaning that plus and minus signs are indicating

whether a point in the plane is below or above the hyperplane.

10See proposition 3 in [11]

9

Figure 1: A hyperplane arrangement

Thus regions are formed which are characterized by a four dimensional sign vector.

Each entry provides information whether a region is on the positive or negative

side of a certain hyperplane.

Figure 2: A COM realized by a hyperplane arrangement

The points on a hyperplane itself are represented by zero entries on the correspond-

10

ing sign vector. Hence intersection points of multiple hyperplanes result in sign

vectors with multiple zero entries. If we interpret each region as a vertex and we

connect only those with vertices respectively regions which are adjacent the tope

graph in figure 3 results. The figure also includes the sign vectors representing the

edges.

Figure 3: The tope graph derived from figure 2

Neighboring topes only differ in one entry of their respective sign vectors

5. Prerequisites and motivation

5.1. Cubes and forbidden minors

Due to its importance and recency COMs were put forward in a separate chapter.

To make sure that the presented ideas and arguments can be understood going

forward the following definitions and theorems are presented.

11

Definition 5 (Hypercube). A hypercube Qn of dimension n is a graph G whose

set of vertices consists of 2n members. Each vertex can be represented by a n-bit

binary string. Two arbitrary vertices are adjacent if their binary representation

differs in exactly one bit.

Figure 4 displays the hypercube Q3 in a binary, graph-like and bipartite repre-

sentation. Hypercubes can be defined in a large variety of ways11. Although all

characterizations are different they are nevertheless equivalent. For this paper in-

cluding the calculations and results presented later we apply the graph perspective.

Figure 4: Binary, graph and bipartite hypercube representation

In a next step we define partial cubes.

Definition 6 (Partial Cube). A graph G is a partial cube if it can be isometrically

embedded in a hypercube Qn which means that the distance function d for G as

well as Qn upholds the condition dG(u, v) =dQn(u,v) for any vertex pair (u,v) in

G.

Therefore a partial cube can be identified with a subgraph of a hypercube so that

the distance between any pair of vertices in the PC matches the distance of that

pair in the hypercube. A PC has to be a connected graph.
11See [2]

12

A way to analyze and characterize partial cubes is via a binary relation on the

set of edges. Djokovic12 and Winkler13 proposed separately similar relations to

do this. For our purposes it will be sufficient to present Winkler’s approach. A

graph G = (V,E) with vertices V and edges E is assumed. An edge connecting the

vertices u and w is represented by the expression {v, w}. The graph theoretical

distance between two vertices v, w ∈ V is defined by δ(v, w) as the length or the

number of edges of the shortest path from v to w. If such a path is not existent

then δ(v, w) = ∞ holds. The distance from one vertex v to itself is δ(v, v) = 0.

Definition 7 (Winkler’s relation). For the edges {u,v} and {x,y} the relation θ is

defined as

{x, y}θ{u, v} ⇔ δ(x, u)+δ(y, v) 6= δ(x, v)+δ(y, u)

For partial cubes this relation fulfills the three requirements of reflexivity, transi-

tivity and symmetry and thus qualifies as a equivalence relation. Therefore the

edges of a partial cube can be decomposed into equivalence classes. The expression

[e] denotes the set of edges belonging to the equivalence class to which the edge

e of the Graph G is part of. The graph without the edges of a particular equiva-

lence class [e] is describe by G\[e]. The set containing all the equivalence classes is

represented by E. Figure 5 which shows the tope graph we have presented earlier

with color coded edges according to its equivalence classes.

12See [14]
13See [13]

13

Figure 5: Tope graph with equivalent class colouring

Removing the edges of a particular class respectively color leads to two conneceted

graphs which are separated. Figure 6 shows two connected but separated graphs

after all the edges of the green equivalence class haven been omitted.

Figure 6: Deletion of the green equivalence class edges

Knauer and Tilen established the following relationship between COMs and PCs.

14

Theorem 1 (PC COM equivalence14). For a graph G both conditions are equiva-

lent:

(i) G is the tope graph of a COM

(ii) G is a PC with no PC minor from the set Q−

A graph H is classified as a PC minor of the graph G if H results from a sequence

of contractions and restrictions of G. In a contraction two vertices of a graph which

are joined by one edge are merged into one new vertex and the respective edge

is removed. A restriction of a graph G means that only a subgraph is taken. In

the context of PC minors both operations are applied with regards to equivalence

classes. For the contraction this results in the fact that a whole equivalence class

of edges is contracted. For the restriction it means that after a whole equivalence

class is deleted one of the two remaining subgraphs is taken. The set Q− is called

the forbidden pc-minors which can be constructed by the following 2-step process:15

1) For any v ∈ Qn construct Q−n := Qn � -v for n ≥ 4 ,-v being the antipode.

2) Remove from Q−n any subset of N(v) ∪ v.

N(v) are representing all the neighbors of v. We define Q−∗n and Q−−n (m) as PCs

from which only one respectively m neighbors including v have been deleted. The

forbidden minors are described by

Q− = {Q−∗n ,Q−−n (m) | 4 ≤ n; 1 ≤ m ≤ n }.

To avoid any misunderstanding we point out that from Q−∗n as well as Q−−n (m)

the antipode -v has been removed. The forbidden minors are defined for n ≥ 4.

Nevertheless we will explain this process for n = 3 because the construction can be
14See theorem 1.1 in [4], for the purpose of brevity and relevance a shortened version of this

theorem is displayed
15For the details and logic behind this process we refer to [4]

15

clarified graphically and the number of vertices remains manageable. As an exam-

ple the hypercube displayed in figure 4 with the set of vertices V = {1,2,3,4,5,6,7,8}

is used. We pick v = 1 as a starting point which has as its antipode -v = 7. After

removing the antipode we end up with Q−3 shown in figure 7.

Figure 7: Q3 and Q−3

The vertices which need to be removed next are N(1)={2,4,5} ∪ {1}. Figure 8

displays Q−−3 (1) and Q−−3 (2)16.

16Please be aware the case for n=3 is not defined, it is just used to exemplify the process.

16

Figure 8: Q−−3 (1) and Q−−3 (2)

5.2. Varchenko matrix

The last central concept which needs to be specified is the varchenko matrix which

was initially defined for a hyperplane arrangement17. Although for the scope of

this thesis the concept has to be applied to partial cubes we explain it in its original

form by giving an example first. Figure 9 displays an arrangement of 3 hyperplanes

Hi for i = 1...3 which creates the regions Rj for j = 1...7.

17See [12]

17

Figure 9: Arrangement of three hyperplanes H1, H2 and H3

The given arrangement leads to a 7× 7 Varchenko Matrix V displayed below18.

V =



1 a1 a1a2 a1a3 a3 a2a3 a1a2a3

a1 1 a2 a3 a1a3 a1a2a3 a2a3

a1a2 a2 1 a2a3 a1a2a3 a1a3 a3

a1a3 a3 a2a3 1 a1 a1a2 a2

a3 a1a3 a1a2a3 a1 1 a2 a1a2

a2a3 a1a2a3 a1a3 a1a2 a2 1 a1

a1a2a3 a2a3 a3 a2 a1a2 a1 1



Each cell (j,k) of this matrix provides information on which of the three hyper-

18The example is taken from [7]

18

planes separates region j from region k. With each hyperplane Hi the variable ai is

associated. For example the cell (1,3) with the value a1a2 means that the regions

R1 and R3 are separated by the hyperplanes H1 as well as H2. H3 is not a separat-

ing hyperplane meaning those regions are on the same side of that hyperplane. In

this case the separator S(R,R’) from 2 matches the requirements for establishing

the varchenko matrix meaning it represents now the set of hyerplanes separating

region R from region R’. For a given hyperplane arrangement A a variable aH is

assigned for each H ∈ A. The expression V = V(A) where the rows and columns

correspond to the regions R(A) defines the varchenko matrix by

VRR′ =
∏

H∈S(R,R′)

aH .

With regard to PCs the varchenko matrix provides information which vertices

are separated or disconnected from each other after removing a whole equivalence

class of edges. The separator S requires generalization and expects as arguments

no longer regions but vertices. It also returns no longer hyerplanes but a set of

equivalences classes. An example detailing the calculation and providing intuition

within the partial cube context is given in chapter 6.3.2. We proceed by giving

the following definition

Definition 8 (Varchenko matrix for a partial cube). For a given partial cube graph

G a variable a[e] is assigned for each equivalene class [e] ∈ E. The expression V

= V(G) where the rows and columns correspond to the vertices of the graph G is

defined as the vachenko matrix by

Vij =
∏

[e]∈S(i,j)
a[e].

19

After having defined the relevant concepts as a basis we can move on to the the-

orems from which the hypothesis examined in this thesis are derived. In their

2022 paper titled "The signed varchenko determinant for complexes of oriented

matroids" Hochstättler, Keip and Knauer established the following result 19

Theorem 2 (Determinant of the varchenko matrix for COMS). Let V be the

varchenko matrix of the COM (E ,L) with ground set E. Then the equation

det(V) =
∏
Y ∈L

(1− c(Y)2)bY

holds where c(Y) :=
∏

e∈z(Y)

xe and bY are nonnegative integers.

The expression c(Y) is the product of the zeroset variables of Y. For further details

we refer to the mentioned paper20. The important finding is that for the COMs a

nice factorization exists.

5.3. Motivation

The goal of this thesis follows up on the question whether there is a forbidden

minor which was developed by Tilen and Knauer21 whose varchenko matrix fac-

torizes as nice as they do for COMs. Based on the current research we can make

the statement that if there is a COM it must have a nice factorization. So the

motivation or hope is to find at least 1 non-COM or partial cube with a nice

factorization in order to falsify the reverse implication of the previous theorem.

The exact scope of this work is to determine the varchenko determinant for all

19See theorem 2.9 in [1]
20See [4]
21See [5]

20

forbiden minors in the dimensions 4 and 5. This task is achieved programmati-

cally by developing code which takes the respective partial cubes derived from Q4

and Q5 as input in the form of graphs. It means the program expects that for

every forbidden minor a graph G = (V,E) is specified by the vertices V, the edges

E and an adjacency list. The expected outputs are the factorized polynomials of

the varchenko determinant for Q−∗4 , Q−−4 (1), Q−−4 (2), Q−−4 (3), Q−−4 (4) and Q−∗5 ,

Q−−5 (1), Q−−5 (2), Q−−5 (3), Q−−5 (4), Q−−5 (5).

6. Overview and analysis of code

6.1. Implementation

The task of creating the varchenko matrices was realized in the programming

language python on the basis of the streamlined editor visual studio code from

Microsoft. The main programmes which achieve this outcome are stored in the two

files Calc_VM.py and PartialCube.py. Each file contains a number of functions

which call or use functions which themselves are stored in other .py-files. Only the

content of Calc_VM.py and PartialCube.py is available in the appendix because

the other referenced .py-files are publicly available22. With the goal of minimizing

the existence of bugs a number of tests have been performed. This happened with

graphs where the equivalence class structure as well as the varchenko matrix can

be deducted by visualizing the graph.

The calculation of the determinants of the respective matrices is realized via maple.

Originally the varchenko matrix creation and determinant calculation were exe-

cuted via python. However the determinant calculation was so time consuming in

python in particular for the minors of dimension n=5 that a switch to maple was

necessary. The maple code is also provided in the appendix.

22The files are available on [9]

21

6.2. Input-output structure

Running the programme Calc_VM.py creates the desired varchenko matrix. It

expects as input an adjacency list for a graph G in curly brackets. The following

example shows the adjacency list for the graph defined in figure 10:

G ={0:[1,7],1:[2,0],2:[1,3],3:[2,4],4:[3,5,7],5:[4,6],6:[5,7],7:[0,4,6]}.

Figure 10: A graph with eight vertices and four equivialence classes

The adjacency lists have to be generated manually. An automated or program-

matic creation process was not pursued. Since the forbidden minor structure is

limited to n <= 5 such an undertaking cannot be justified. However the manual

process is error-prone. In order to minimize mistakes in creating the graphs for

the forbidden minors first a binary vertex structure was established. Then cross

checks were applied on the neighbours which had to meet the conditions regarding

the sum of digits and the identity of n-1 digits for each neighbour. After those

22

checks have been passed the vertices were renamed with numbers starting from

zero and then the adjacency list is created.

Once Calc_VM.py is run it firstly checks if the graph provided as input is a partial

cube. If this is the case the program produces as output a comma separated file

named VarchenkoMatrix.txt. The creation of the determinant can be activated

by removing the uncomment signs which were put in place due to the mentioned

efficiency considerations. The variables linked to the varchenko matrix calculation

are represented by the symbols xi and separated by the star sign "*". The cell (i,j)

of the respective varchenko matrix can be found in the i-th line of the txt-file after

the (j-1)-th comma. The creation of the varchenko matrix is fully automated. This

means that only the graph needs to be provided as input and the programme by

itself defines the correct size of the varchenko matrix and the number of variables.

In a next step the determinants are calculated by running the two maple pro-

grammes named Calc_Det_PC_4.mv or Calc_Det_PC_5.mv for the dimen-

sions n = 4 and n = 5. As inputs the txt-files are expected to be namedQn_star.txt

or Q_n_m.txt in accordance with the naming convention of the forbidden minors.

With n standing for the dimension and m for the number of neighbors being re-

moved. Hence the txt-files containing the varchenko matrices generated in the

previous step need to be manually renamed. The factorized polynomials calcu-

lated in maple are returned right away.

6.3. Programm details

After explaining on a high level how the programme works the relevant details

will be lined out with the help of an example. In a first step the python code will

be explained by splitting it into two blocks with regards to content. The second

step deals with explaining the maple programmes respectively the determinant

calculation.

23

6.3.1. Block1: Establishing the equivalence classes in python

The code for determining the equivalence classes uses functionality from a pub-

lic python library which has been provided by David Eppstein. The library re-

sulted from a paper which introduced an algorithm that recognizes partial cubes

in quadratic time23. The code of Eppstein had to be modified by extending the

function

“def PartialCubeEdgeLabeling(G)” into “def PartialCubeEdgeECs(G)”.

For any given graph G being a partial cube it structures and creates the equivalence

classes and its members in a python dictionary. The function itself is also wrapped

or used in a variety of functions as a building block. Just returning the equivalence

classes is done with the function “def EquiClassPCReps(G)”. The function “def

CreateEcVarDict(ecs)” creates given a set of equivalence classes ecs a dictionary

in which each equivalence class is assigned a variable xi. The three functions

outlined are the most important ones in understanding the process of creating

the varchenko matrix. Therefore the use of these functions will be shown by an

example. We are assuming the graph G displayed in figure 11 is assigned the

following adjacency list

G ={0:[1,7],1:[2,0],2:[1,3],3:[2,4],4:[3,5,7],5:[4,6],6:[5,7],7:[0,4,6]}.

23See [9] and [10]

24

Figure 11: A graph with eight vertices and four equivialence classes

Then the code for calling those three functions looks like 24

ecs_mem_dict = PartialCubeEdgeECs(G)

ecs_mem_dict =

{(3, 4): {(0, 1), (3, 4)}, (2, 3): {(2, 3), (0, 7)}, (4, 7): {(1, 2), (4, 7), (5, 6)}, (6, 7): {(6, 7),

(4, 5)}}

ecs = EquiClassPCReps(G)

ecs = {(2, 3), (6, 7), (3, 4), (4, 7)}

ecDict = CreateEcVarDict(ecs)

ecDict = {(2, 3): x1, (6, 7): x2, (3, 4): x3, (4, 7): x4} .

24For a better overview the result of each function call is presented right away also the equivalence
class representatives in the dictionary esc_mem_dict have been marked bold.

25

6.3.2. Block 2: Creating the varchenko matrix in python

The varchenko matrix for a graph G is built with the help of the function “def

buildVarMat(G)” which uses the three previously stated functions . The process

to build the matrix is based on a double loop which iterates trough each cell

below the diagonal of the corresponding varchenko matrix. For each vertex pair

or respectively cell (i,j) all the edges of each equivalence class are deleted from

the graph G. Then the programme analyzes whether vertex i is still connected to

vertex j in the new disconnected graph. For all the separating equivalence classes

the respective variable is incorporated into the product that represents the value

in cell (i,j)25. Figure 12 graphically explains the process for the cell (0,1).

Figure 12: Removing all the edges for each of the four equivalence classes

25The rows and columns correspond to the vertices whose naming starts from 0 meaning that
cell (0,0) represents the cell in the first row and first column of the matrix.

26

It can be seen that all the edges for each one of the four equivalence class have

been removed. Only in the case when the black or the x3 equivalence class has

been removed there exists no path that connects the vertices 0 and 126. Thus x3

is the only separating equivalence class and the cell (0,1) in the varchenko matrix

displayed below is assigned the value of x3.

V =



1 x3 x3x4 x1x3x4 x1x4 x1x2x4 x1x2 x1

x3 1 x4 x1x4 x1x3x4 x1x2x3x4 x1x2x3 x1x3

x3x4 x4 1 x1 x1x3 x1x2x3 x1x2x3x4 x1x3x4

x1x3x4 x1x4 x1 1 x3 x2x3 x2x3x4 x3x4

x1x4 x1x3x4 x1x3 x3 1 x2 x2x4 x4

x1x2x4 x1x2x3x4 x1x2x3 x2x3 x2 1 x4 x2x4

x1x2 x1x2x3 x1x2x3x4 x2x3x4 x2x4 x4 1 x2

x1 x1x3 x1x3x4 x3x4 x4 x2x4 x2 1



6.4. Determinant calculation

The calculation for all the forbidden minors is standardized. The code displayed

below shows the calculation for Q−−5 (1).

Q_5_1 := ImportMatrix("path_of_file/VM_5_1.txt", delimiter = ",");

Q_5_1 := map(t -> if(type(t, string), parse(t), t), Q_5_1);

Q_5_1 := GaussianElimination(Q_5_1);

factor(Determinant(Q_5_1));

In the first two lines the renamed file whose creation was described in the previous

26See lower left corner of figure 12

27

section is read into maple and adjusted so it can be processed correctly 27. Then

the Gaussian Elimination algorithm is applied which transforms the matrix into

a triagonal structure. This step is necessary because otherwise the calculation of

the determinant would require too much time. Finally the polynomial is factorized

and returned.

6.5. Scalability

Setting up the adjacency lists manually and ensuring their correctness is very time-

consuming. For each minor of dimension 5 the whole calculation took around 30

minutes which has to be considered as a lower bound since the number of vertices

grows exponentially with the dimension size. Therefore automating the creation

of the input files for the forbidden minors will result in significant time gains.

Furthermore running all the calculations in python in contrast with the current

python and maple solution would approximately save 3 minutes per minor due

to renaming and loading processes. However an efficient python-only solution is

currently not achievable. As the libary in python responsible for the symbolic

calculations does not possess a Gaussian algorithm which allows to transform the

varchenko matrix in a lower or upper triangular form. Examining the PC minors

for the dimension 6 can be considered a borderline case but for all higher dimen-

sions the analysis of the varchenko determinant cannot be recommended without

the proposed improvements. An upper limit for the developed programme to work

are partial cubes with 50 equivalence classes. For more than 50 equivalence classes

manual adjustments in the code are necessary. 28

27path_of_file stands for the location of the file
28See the python code in A

28

7. Calculations

Below the determinants for the varchenko matrices of the forbidden minors are

listed using the abbreviation VD. The results are displayed as they were produced

in maple.

VD(Q−∗4) =

-(x1 − 1)6(x1 + 1)6(x2 − 1)6(x2 + 1)6(x3 − 1)6(x3 + 1)6(x4 − 1)6

(x4 + 1)6(x1x3x4 − 1)(x1x3x4 + 1)

VD(Q−−4 (1)) =

(x1 − 1)6(x1 + 1)6(x2 − 1)5(x2 + 1)5(x3 − 1)5(x3 + 1)5(x4 − 1)5

(x4 + 1)5(x2x3x4 − 1)(x2x3x4 + 1)

VD(Q−−4 (2)) =

(x1 − 1)5(x1 + 1)5(x2 − 1)5(x2 + 1)5(x3 − 1)4(x3 + 1)4(x4 − 1)4(x4 + 1)4

(x21x
2
2x

2
3x

2
4 − x21x23x24 − x22x23x24 + 1)

VD(Q−−4 (3)) =

- (x1 − 1)4(x1 + 1)4(x2 − 1)4(x2 + 1)4(x3 − 1)4(x3 + 1)4(x4 − 1)3(x4 + 1)3

(2x21x
2
2x

2
3x

2
4 − x21x22x24 − x21x23x24 − x22x23x24 + 1)

VD(Q−−4 (4)) =

(x1 − 1)3(x1 + 1)3(x2 − 1)3(x2 + 1)3(x3 − 1)3(x3 + 1)3(x4 − 1)3(x4 + 1)3

(3x21x
2
2x

2
3x

2
4 − x21x22x23 − x21x22x24 − x21x23x24 − x22x23x24 + 1)

The minors for the dimension n = 5 are presented below.

VD(Q−∗5) =

-(x1 − 1)14(x1 + 1)14(x2 − 1)14(x2 + 1)14(x3 − 1)14(x3 + 1)14(x4 − 1)14(x4 + 1)14

(x5 − 1)14(x5 + 1)14(x2x3x4x5 − 1)(x2x3x4x5 + 1)

29

VD(Q−−5 (1)) =

-(x1 − 1)13(x1 + 1)13(x2 − 1)13(x2 + 1)13(x3 − 1)14(x3 + 1)14(x4 − 1)13(x4 + 1)13

(x5 − 1)13(x5 + 1)13(x1x2x4x5 − 1)(x1x2x4x5 + 1)

VD(Q−−5 (2)) =

(x1 − 1)13(x1 + 1)13(x2 − 1)12(x2 + 1)12(x3 − 1)13(x3 + 1)13(x4 − 1)12(x4 + 1)12

(x5 − 1)12(x5 + 1)12(x21x
2
2x

2
3x

2
4x

2
5 − x21x22x24x25 − x22x23x24x25 + 1)

VD(Q−−5 (3)) =

(x1 − 1)12(x1 + 1)12(x2 − 1)12(x2 + 1)12(x3 − 1)12(x3 + 1)12(x4 − 1)11(x4 + 1)11

(x5 − 1)11(x5 + 1)11(2x21x
2
2x

2
3x

2
4x

2
5 − x21x22x24x25 − x21x23x24x25 − x22x23x24x25 + 1)

VD(Q−−5 (4)) =

(x1 − 1)11(x1 + 1)11(x2 − 1)11(x2 + 1)11(x3 − 1)11(x3 + 1)11(x4 − 1)11(x4 + 1)11

(x5−1)10(x5+1)10(3x21x
2
2x

2
3x

2
4x

2
5−x21x22x23x25−x21x22x24x25−x21x23x24x25−x22x23x24x25+1)

VD(Q−−5 (5)) =

(x1 − 1)10(x1 + 1)10(x2 − 1)10(x2 + 1)10(x3 − 1)10(x3 + 1)10(x4 − 1)10(x4 + 1)10

(x5 − 1)10(x5 + 1)10(4x21x
2
2x

2
3x

2
4x

2
5 − x21x22x23x24 − x21x22x23x25 − x21x22x24x25 − x21x23x24x25 −

x22x
2
3x

2
4x

2
5 + 1)

With a few trivial reorganizations it can be seen that some determinants of the

minors have a factorization which is consistent with theorem 2. For example after

applying some basic substitutions the minor Q−∗5 can be written as

VD(Q−∗5) =

(1 - x21)14(1− x22)14(1− x23)14(1− x24)14(1− x25)14(1− x22x23x24x25)

This also applies for Q−−4 (1) or Q−−5 (1). For the sake of self inclusion, completeness

and in order to make the mentioned concepts from the previous chapters more

tangible it will be shown why the partial cube Q−∗5 is not a COM. In the figure

below Q−∗5 is displayed using different partial cube representations.

30

Figure 13: Different partial cube representations

The vectors missing from Q−∗5 are the vectors 30 and 31 which are marked in blue.

Following the terminology from chapter 5 the vector 29 can be considered v, the

vector 31 corresponds to the antipode -v and the vector 30 is the so called first

neighbor. Our reasoning will be based on the “+1/0/-1” representation. Firstly we

outline the overall strategy. As a starting point we are assuming that Q−∗5 qualifies

as a COM and hence the axioms of face symmetry (FS) and strong elimination

(SE) apply. Then with the help of those axioms the existence of certain vectors

31

is established which in turn can be used to imply the existence of a vector which

is by definition excluded from Q−∗5 . Hence the assumption of Q−∗5 being a COM

cannot be maintained.

From the following vector pairs in figure 14 it can be inferred on the basis of SE

that the vectors 32, 33, 34 and 35 are part of the assumed COM.

Figure 14: Establishing vectors with the help of the COM axioms

The entries which have opposing signs are displayed in bold. Based on the same

argument we can deduct the presence of the vectors 36 and 37. There are now

two entries with different signs. SE guarantees the existence of one vector from

the vectors 38, 39 or 40. It can be easily seen that if the vectors 38 and 39 are

composed with vector 1 the vector 31 is part of Q5-*. Composing vector 40 with

vector 29 results also in a contradiction because of number 30. Therefore Q−∗5
cannot be a COM.

8. Summary, results and conclusion

In a first step an historical overview has been given which was followed by in-

troducing all the relevant concepts for this thesis. These concepts have then been

explained mainly by graphic examples. After this theoretical groundwork has been

done the central question of this thesis has been formulated. Then the code how

32

this task will be solved progammatically has been outlined. Finally the solution

which contained the nice factorizations of Q−−4 (1), Q−∗5 and Q−−5 (1) has been pre-

sented. Therefore the question whether there exists a non-COM being a partial

cube possessing a nice factorization can be positively answered. This allows to

falsify the reverse implication of theorem 2. This means from an object having a

nice factorization you cannot deduct on its structural property. Still there could

be subclasses of partial cubes not being COMs whose varchenko determinant also

factorize nicely. Finding or disproving such a factorization theorem or establishing

a framework which provides guidelines to narrow it down is up to further research.

33

Appendices

A. Python Code: Calc_VM.py

"""Calc_VM.py

B. Yazici 2024

"""

import DFS

import PartialCube

import copy

from StrongConnectivity import StronglyConnectedComponents

import sympy

from sympy import *

from itertools import combinations

#calculates number of vertices in graph

def NumOfVert(G):

return len(G)

34

#calculates number of equivalence classes in graph

def AmtEquiClassPC(G):

ver_dict_ec = PartialCube.PartialCubeEdgeLabeling(G)

coll_ec = set()

for ver1 in ver_dict_ec:

for ver2 in ver_dict_ec[ver1]:

ec = ver_dict_ec[ver1][ver2]

coll_ec.add(Arrange2EleTuple(ec))

return(len(coll_ec))

def EquiClassPCReps(G):

ver_dict_ec = PartialCube.PartialCubeEdgeECs(G)

return set(ver_dict_ec.keys())

#prints for each vertex to which equivalence classes it is linked

def VerWithVerEC(G):

ver_dict_ec = PartialCube.PartialCubeEdgeLabeling(G)

coll_ec = set()

for ver1 in ver_dict_ec:

35

for ver2 in ver_dict_ec[ver1]:

ec = ver_dict_ec[ver1][ver2]

print(ver1,Arrange2EleTuple(ec))

#returns for each vertex to which "ec side" it is linked to (a,b) or (b,a)

def VerWithEC_unarr(G):

ver_dict_ec = PartialCube.PartialCubeEdgeLabeling(G)

dict_ec = {}

coll_ec = set()

for ver1 in ver_dict_ec:

coll_ec = set()

for ver2 in ver_dict_ec[ver1]:

ec = ver_dict_ec[ver1][ver2]

coll_ec.add(ec)

dict_ec[ver1]=coll_ec

return dict_ec

#returns for each vertex the equivalence class irrespective of side

def VerWithEC(G):

36

ver_dict_ec = PartialCube.PartialCubeEdgeLabeling(G)

dict_ec = {}

coll_ec = set()

for ver1 in ver_dict_ec:

coll_ec = set()

for ver2 in ver_dict_ec[ver1]:

ec = ver_dict_ec[ver1][ver2]

coll_ec.add(Arrange2EleTuple(ec))

dict_ec[ver1]=coll_ec

return dict_ec

#returns for (a,b) a tuple (a,b) if a>b else (b,a)

def Arrange2EleTuple(tup):

if tup[0] > tup[1]:

return (tup[1],tup[0])

else:

return tup

#returns a set of equivalence classes an arranges them, no distinction between (a,b) or (b,a)

37

def CreateSetECArr(set_EC):

set_a_EC = set()

for ec in set_EC:

set_a_EC.add(Arrange2EleTuple(ec))

return set_a_EC

#returns a dictionary where each equivalence class is linked to x1,x2....

def CreateEcVarDict(coll_ec):

i = 1

dict_ec ={}

for ec in coll_ec:

dict_ec[ec] = var_dict[i]

i = i + 1

return dict_ec

#returns a graph G whose "edge" is removed

def removeEdgeGraph(G,edge):

G_new = copy.deepcopy(G)

G_new[edge[1]].remove(edge[0])

38

G_new[edge[0]].remove(edge[1])

return G_new

#checks if Graph G is connected

def isConnectedGraph(G):

L = list(StronglyConnectedComponents(G))

if len(L) != 1:

return False

else:

return True

#returns all the edges from Graph G

def getEdgesGraph(G):

edges = set()

for ver in G:

for g in G[ver]:

edges.add(Arrange2EleTuple((ver,g)))

return edges

39

#checks for the vertices v and w if they are still connected after all the edges from the equivalence class are removed

def getVMcell(G,v,w,ecsEdges,ecDict):

vmc = ""

for ec in ecsEdges:

G_new = copy.deepcopy(G)

for edge in ecsEdges[ec]:

G_new = removeEdgeGraph(G_new,edge)

if not DFS.reachable(G_new,v,w):

if vmc == "":

vmc = ecDict[ec]

else:

vmc = vmc * ecDict[ec]

return vmc

#returns a square matrix of nov x nov

def sqrMat(nov):

lst = [1]*nov

M = Matrix([lst])

for i in range(0,nov-1):

40

M=M.row_insert(1,Matrix([lst]))

return M

#returns the Varchenko Matrix for Graph G

def buildVarMat(G):

ecs = EquiClassPCReps(G)

ecDict = CreateEcVarDict(ecs)

ecsEdges = PartialCube.PartialCubeEdgeECs(G)

nov = NumOfVert(G)

M = sqrMat(nov)

for i in range(0,nov):

for j in range(0,i):

z = getVMcell(G,i,j,ecsEdges,ecDict)

M[(i)*nov+j]=z

M[(j)*nov+i]=z

return M

41

#saves Matrix in local directory as comma separated txt file

def saveMatrix(M):

n = shape(M)[1]

i = 1

with open(’VarchenkoMatrix.txt’, ’w’) as f:

for line in M:

if i % n != 0:

inp = str(line) + str(",")

f.write(inp)

else:

inp = str(line) + str("\n")

f.write(inp)

i = i+1

#saves Determinant

def saveDet(D):

with open(’Det.txt’, ’w’) as f:

f.write(str(D))

42

#arranges edges (a,b) to (b,a) if b>a so edges belonging to ec (a,b) and (b,a) are put in the class (a,b)

def arrangeDictionary(inp_dict):

out_dict = {}

for t in inp_dict:

if Arrange2EleTuple(t) not in out_dict:

out_dict[Arrange2EleTuple(t)]=inp_dict[t]

else:

out_dict[Arrange2EleTuple(t)]=out_dict[Arrange2EleTuple(t)].union(inp_dict[t])

return out_dict

#Start: Verzeichnis globaler Parameter/Variable———————————————–

x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,

x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50

= sympy.symbols(’x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29

,x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50’)

var_dict = {1:x1,2:x2,3:x3,4:x4,5:x5,6:x6,7:x7,8:x8,9:x9,10:x10,11:x11,12:x12,13:x13,14:x14,

15:x15,16:x16,17:x17,18:x18,19:x19,20:x20,21:x21,22:x22,23:x23,24:x14,25:x25,26:x26,27:x27,

28:x28,29:x29,30:x30,31:x31,32:x32,33:x13,34:x34,35:x35,36:x36,37:x37,38:x38,39:x39,40:x40,

43

41:x41,42:x42,43:x43,44:x44,45:x45,46:x46,47:x47,48:x48,49:x49,50:x50}

#Ende: Verzeichnis globaler Parameter Variable————————————————

print("———————-Start———————-")

#Testgraphs:

#G = {0:[1,2,4],1:[0,3,5],2:[0,3],3:[1,2,6],4:[0,5],5:[4,1,6],6:[5,3]}

#G = {0:[1,2,4],1:[0,3,5],2:[0,3],3:[1,2,6],4:[0,5],5:[4,1,6],6:[5,3,7],7:[6]}

#G = {0:[2,3],1:[3,4],2:[0],3:[0,1],4:[1]}

#G = {0:[1,5,6],1:[0,2],2:[1,3,7],3:[2,4],4:[3,5,8],5:[0,4],6:[0,9],7:[2,9],8:[4,9],9:[6,7,8]}

#G = {0:[1,5],1:[0,2],2:[1,3],3:[2,4,6,10],4:[3,5,7],5:[0,4],6:[3,7,9],7:[4,6,8],8:[7,9],9:[6,8,10],10:[3,9]}

#G= {0:[1,2,4,6] ,1:[0,3,5] ,2:[0,3,7] ,3:[1,2,8] ,4:[0,5,9] ,5:[1,4,10] ,6:[0,7,9] ,7:[2,6,8,11] ,8:[3,7,12] ,9:[4,6,10,11] ,10:[5,9,12]

,11:[7,9,12] ,12:[8,10,11] }

#G = {0:[1,2,4,7] ,1:[0,3,5] ,2:[0,3,8] ,3:[1,2,6,9] ,4:[0,5,10] ,5:[1,4,6,11] ,6:[3,5,13] ,7:[0,8,10] ,8:[2,7,9,12] ,9:[3,8,13]

,10:[4,7,11,12] ,11:[5,10,13] ,12:[8,10,13],13:[6,9,11,12] }

#G = {0:[4,5,6] ,1:[4,5,7] ,2:[4,6,7] ,3:[5,6,7] ,4:[0,1,2] ,5:[0,1,3] ,6:[0,2,3] ,7:[1,2,3]}

#G = {0:[1,2] ,1:[0,3] ,2:[0,4] ,3:[1,5] ,4:[2,5,6] ,5:[3,4,7] ,6:[4,7] ,7:[5,6]}

#G = {0:[1,2,4,7],1:[0,3,8],2:[0,3,5],3:[1,2,6],4:[0,10],5:[2,6,7,9],6:[3,5,8],7:[0,5,8,10],

8:[1,6,7,11] ,9:[5,10], 10:[4,7,9,11],11:[8,10] }

44

#G = {0:[1,4] ,1:[0,2,5] ,2:[1,3,6] ,3:[2,7] ,4:[0,5,8] ,5:[1,4,6] ,6:[2,5,7] ,7:[3,6,9] ,8:[4,9] ,9:[7,8] }

#G= {0:[1,2,5] ,1:[0,3,7] ,2:[0,3,4] ,3:[1,2,6,8] ,4:[2,5,8,9] ,5:[0,4,11] ,6:[3,7,10] ,7:[1,6,12] ,8:[3,4,10] ,9:[4,10,11] ,10:[6,8,9,12]

,11:[5,9,12] ,12:[7,10,11] }

#G = {0:[1],1:[0]}

#Forbidden Minors of Dim 4:

#G_4_4 = {0:[1,5,6],1:[0,2],2:[1,3,7],3:[2,4],4:[3,5,8],5:[0,4],6:[0,9],7:[2,9],8:[4,9],9:[6,7,8]}

#G_4_3 = {0:[1,5,6],1:[0,2],2:[1,3,7],3:[2,4],4:[3,5,8],5:[0,4,10],6:[0,9,10],7:[2,9],8:[4,9,10],9:[6,7,8],10:[5,6,8]}

#G_4_2 = {0:[1,5,6],1:[0,2],2:[1,3,7],3:[2,4,11],4:[3,5,8],5:[0,4,10],6:[0,9,10],7:[2,9,11],8:[4,9,10,11],9:[6,7,8],10:[5,6,8],11:[3,7,8]}

#G_4_1 = {0:[1,5,6],1:[0,2,12],2:[1,3,7],3:[2,4,11],4:[3,5,8],5:[0,4,10],6:[0,9,10,12],7:[2,9,11,12],8:[4,9,10,11],9:[6,7,8],10:[5,6,8],

11:[3,7,8],12:[1,6,7]}

#G_4_star = {0:[1,5,6],1:[0,2,12],2:[1,3,7],3:[2,4,11],4:[3,5,8],5:[0,4,10],6:[0,9,10,12],7:[2,9,11,12],8:[4,9,10,11],9:[6,7,8],

10:[5,6,8,13],11:[3,7,8,13],12:[1,6,7,13],13:[10,11,12]}

#Forbidden Minors of Dim 5:

#G_5_star = {0:[8,10,12,14],1:[8,16,18,21],2:[12,16,22,23],3:[14,18,22,24],4:[10,21,23,24],5:[8,10,21,25,26],6:[8,12,16,25,27],

7:[8,14,18,26,27],8:[0,1,5,6,7],9:[10,12,23,25,28],10:[0,4,5,9,11],11:[10,14,24,26,28],12:[0,2,6,9,13],13:[12,14,22,27,28],

14:[0,3,7,11,13],15:[16,18,22,27],16:[1,2,6,15,19],17:[22,23,24,28],18:[1,3,7,15,20],19:[16,21,23,25],20:[18,21,24,26],21:[1,4,5,19,20],

22:[2,3,13,15,17],23:[2,4,9,17,19],24:[3,4,11,17,20],25:[5,6,9,19,29],26:[5,7,11,20,29],27:[6,7,13,15,29],28:[9,11,13,17,29],29:[25,26,27,28]}

45

#G_5_1 = {0:[8,10,12,14],1:[8,16,18,21],2:[12,16,22,23],3:[14,18,22,24],4:[10,21,23,24],5:[8,10,21,25,26],6:[8,12,16,25,27],

7:[8,14,18,26,27],8:[0,1,5,6,7],9:[10,12,23,25,28],10:[0,4,5,9,11],11:[10,14,24,26,28],12:[0,2,6,9,13],13:[12,14,22,27,28],14:[0,3,7,11,13],

15:[16,18,22,27],16:[1,2,6,15,19],17:[22,23,24,28],18:[1,3,7,15,20],19:[16,21,23,25],20:[18,21,24,26],21:[1,4,5,19,20],22:[2,3,13,15,17],

23:[2,4,9,17,19],24:[3,4,11,17,20],25:[5,6,9,19],26:[5,7,11,20],27:[6,7,13,15],28:[9,11,13,17]}

#G_5_2 = {0:[8,10,12,14],1:[8,16,18,21],2:[12,16,22,23],3:[14,18,22,24],4:[10,21,23,24],5:[8,10,21,25,26],6:[8,12,16,25,27],

7:[8,14,18,26,27],8:[0,1,5,6,7],9:[10,12,23,25],10:[0,4,5,9,11],11:[10,14,24,26],12:[0,2,6,9,13],13:[12,14,22,27],14:[0,3,7,11,13],

15:[16,18,22,27],16:[1,2,6,15,19],17:[22,23,24],18:[1,3,7,15,20],19:[16,21,23,25],20:[18,21,24,26],21:[1,4,5,19,20],22:[2,3,13,15,17],

23:[2,4,9,17,19],24:[3,4,11,17,20],25:[5,6,9,19],26:[5,7,11,20],27:[6,7,13,15]}

#G_5_3 = {0:[8,10,12,14],1:[8,16,18,21],2:[12,16,22,23],3:[14,18,22,24],4:[10,21,23,24],5:[8,10,21,25,26],6:[8,12,16,25],

7:[8,14,18,26],8:[0,1,5,6,7],9:[10,12,23,25],10:[0,4,5,9,11],11:[10,14,24,26],12:[0,2,6,9,13],13:[12,14,22],14:[0,3,7,11,13],15:[16,18,22]

,16:[1,2,6,15,19],17:[22,23,24],18:[1,3,7,15,20],19:[16,21,23,25],20:[18,21,24,26],21:[1,4,5,19,20],22:[2,3,13,15,17],23:[2,4,9,17,19],

24:[3,4,11,17,20],25:[5,6,9,19],26:[5,7,11,20]}

#G_5_4 = {0:[8,10,12,14],1:[8,16,18,21],2:[12,16,22,23],3:[14,18,22,24],4:[10,21,23,24],5:[8,10,21,25],6:[8,12,16,25],7:[8,14,18],

8:[0,1,5,6,7],9:[10,12,23,25],10:[0,4,5,9,11],11:[10,14,24],12:[0,2,6,9,13],13:[12,14,22],14:[0,3,7,11,13],15:[16,18,22],16:[1,2,6,15,19],

17:[22,23,24],18:[1,3,7,15,20],19:[16,21,23,25],20:[18,21,24],21:[1,4,5,19,20],22:[2,3,13,15,17],23:[2,4,9,17,19],24:[3,4,11,17,20],

25:[5,6,9,19]}

#G_5_5 = {0:[8,10,12,14],1:[8,16,18,21],2:[12,16,22,23],3:[14,18,22,24],4:[10,21,23,24],5:[8,10,21],6:[8,12,16],7:[8,14,18],

8:[0,1,5,6,7],9:[10,12,23],10:[0,4,5,9,11],11:[10,14,24],12:[0,2,6,9,13],13:[12,14,22],14:[0,3,7,11,13],15:[16,18,22],16:[1,2,6,15,19],

17:[22,23,24],18:[1,3,7,15,20],19:[16,21,23],20:[18,21,24],21:[1,4,5,19,20],22:[2,3,13,15,17],23:[2,4,9,17,19],24:[3,4,11,17,20]}

46

if not PartialCube.isPartialCube(G):

print("Der Graph G ist kein Partial Cube")

else:

print("G ist ein Partial Cube")

print("G hat die folgende Äquivalenzklassen mit Bezeichner Vertreter xi")

ecs = EquiClassPCReps(G)

print(CreateEcVarDict(ecs))

print("G hat die folgenden Äquivalenzklassen inkl. den Klassenmitgliedern:")

print(PartialCube.PartialCubeEdgeECs(G))

print("Die Varchenko Matrix VM von G lautet:")

M = buildVarMat(G)

sympy.pretty_print(M)

saveMatrix(M)

print("VM wurde als VarchenkoMatrix.txt gespeichert")

print("———————-End———————-")

47

B. Python Code: PartialCube.py

"""PartialCube.py

Test whether a graph is an isometric subgraph of a hypercube.

D. Eppstein, September 2005, rewritten May 2007 per arxiv:0705.1025. incl modifications are by B. Yazici """

import BFS

import Medium

from Bipartite import isBipartite

from UnionFind import UnionFind

from StrongConnectivity import StronglyConnectedComponents

from Graphs import isUndirected

import unittest

from itertools import combinations

def PartialCubeEdgeLabeling(G):

"""

Label edges of G by their equivalence classes in a partial cube structure.

48

We follow the algorithm of arxiv:0705.1025, in which a number of equivalence classes equal to the maximum

degree of G can be found simultaneously by a single breadth first search, using bitvectors. However, in order

to avoid deep recursions (problematic in Python) we use a union-find data structure to keep track of edge

identifications discovered so far. That is, we repeatedly contract our initial graph, maintaining as we do the

property that G[v][w] points to a union-find set representing edges in the original graph that have been

contracted to the single edge v-w.

"""

Some simple sanity checks

if not isUndirected(G):

raise Medium.MediumError("graph is not undirected")

L = list(StronglyConnectedComponents(G))

if len(L) != 1:

raise Medium.MediumError("graph is not connected")

Set up data structures for algorithm:

- UF: union find data structure representing known edge equivalences

- CG: contracted graph at current stage of algorithm

49

- LL: limit on number of remaining available labels

UF = UnionFind()

CG = {v:{w:(v,w) for w in G[v]} for v in G}

NL = len(CG)-1

Initial sanity check: are there few enough edges?

Needed so that we don’t try to use union-find on a dense

graph and incur superquadratic runtimes.

n = len(CG)

m = sum([len(CG[v]) for v in CG])

if 1«(m//n) > n:

raise Medium.MediumError("graph has too many edges")

Main contraction loop in place of the original algorithm’s recursion

while len(CG) > 1:

if not isBipartite(CG):

raise Medium.MediumError("graph is not bipartite")

Find max degree vertex in G, and update label limit

50

deg,root = max([(len(CG[v]),v) for v in CG])

if deg > NL:

raise Medium.MediumError("graph has too many equivalence classes")

NL -= deg

Set up bitvectors on vertices

bitvec = {v:0 for v in CG}

neighbors = {}

i = 0

for neighbor in CG[root]:

bitvec[neighbor] = 1«i

neighbors[1«i] = neighbor

i += 1

Breadth first search to propagate bitvectors to the rest of the graph

for LG in BFS.BreadthFirstLevels(CG,root):

for v in LG:

for w in LG[v]:

bitvec[w] |= bitvec[v]

51

Make graph of labeled edges and union them together

labeled = {v:set() for v in CG}

for v in CG:

for w in CG[v]:

diff = bitvec[v]∧bitvec[w]

if not diff or bitvec[w] & ∼ bitvec[v] == 0:

continue # zero edge or wrong direction

if diff not in neighbors:

raise Medium.MediumError("multiply-labeled edge")

neighbor = neighbors[diff]

UF.union(CG[v][w],CG[root][neighbor])

UF.union(CG[w][v],CG[neighbor][root])

labeled[v].add(w)

labeled[w].add(v)

Map vertices to components of labeled-edge graph

component = {}

compnum = 0

52

for SCC in StronglyConnectedComponents(labeled):

for v in SCC:

component[v] = compnum

compnum += 1

generate new compressed subgraph

NG = {i:{} for i in range(compnum)}

for v in CG:

for w in CG[v]:

if bitvec[v] == bitvec[w]:

vi = component[v]

wi = component[w]

if vi == wi:

raise Medium.MediumError("self-loop in contracted graph")

if wi in NG[vi]:

UF.union(NG[vi][wi],CG[v][w])

else:

NG[vi][wi] = CG[v][w]

CG = NG

53

Here with all edge equivalence classes represented by UF.

Turn them into a labeled graph and return it.

return {v:{w:UF[v,w] for w in G[v]} for v in G}

#modified by BYAZ in order to return the library of eqclasses and the corresponding edges

def PartialCubeEdgeECs(G):

"""

Label edges of G by their equivalence classes in a partial cube structure.

We follow the algorithm of arxiv:0705.1025, in which a number of equivalence classes equal to the maximum

degree of G can be found simultaneously by a single breadth first search, using bitvectors. However, in order

to avoid deep recursions (problematic in Python) we use a union-find data structure to keep track of edge

identifications discovered so far. That is, we repeatedly contract our initial graph, maintaining as we do the

property that G[v][w] points to a union-find set representing edges in the original graph that have been

contracted to the single edge v-w.

"""

Some simple sanity checks

if not isUndirected(G):

54

raise Medium.MediumError("graph is not undirected")

L = list(StronglyConnectedComponents(G))

if len(L) != 1:

raise Medium.MediumError("graph is not connected")

Set up data structures for algorithm:

- UF: union find data structure representing known edge equivalences

- CG: contracted graph at current stage of algorithm

- LL: limit on number of remaining available labels

UF = UnionFind()

CG = {v:{w:(v,w) for w in G[v]} for v in G}

NL = len(CG)-1

Initial sanity check: are there few enough edges?

Needed so that we don’t try to use union-find on a dense

graph and incur superquadratic runtimes.

n = len(CG)

m = sum([len(CG[v]) for v in CG])

if 1«(m//n) > n:

55

raise Medium.MediumError("graph has too many edges")

Main contraction loop in place of the original algorithm’s recursion

while len(CG) > 1:

if not isBipartite(CG):

raise Medium.MediumError("graph is not bipartite")

Find max degree vertex in G, and update label limit

deg,root = max([(len(CG[v]),v) for v in CG])

if deg > NL:

raise Medium.MediumError("graph has too many equivalence classes")

NL -= deg

Set up bitvectors on vertices

bitvec = {v:0 for v in CG}

neighbors = {}

i = 0

for neighbor in CG[root]:

bitvec[neighbor] = 1«i

56

neighbors[1«i] = neighbor

i += 1

Breadth first search to propagate bitvectors to the rest of the graph

for LG in BFS.BreadthFirstLevels(CG,root):

for v in LG:

for w in LG[v]:

bitvec[w] |= bitvec[v]

Make graph of labeled edges and union them together

labeled = {v:set() for v in CG}

for v in CG:

for w in CG[v]:

diff = bitvec[v]∧bitvec[w]

if not diff or bitvec[w] & ∼ bitvec[v] == 0:

continue # zero edge or wrong direction

if diff not in neighbors:

raise Medium.MediumError("multiply-labeled edge")

neighbor = neighbors[diff]

57

UF.union(CG[v][w],CG[root][neighbor])

UF.union(CG[w][v],CG[neighbor][root])

labeled[v].add(w)

labeled[w].add(v)

Map vertices to components of labeled-edge graph

component = {}

compnum = 0

for SCC in StronglyConnectedComponents(labeled):

for v in SCC:

component[v] = compnum

compnum += 1

generate new compressed subgraph

NG = {i:{} for i in range(compnum)}

for v in CG:

for w in CG[v]:

if bitvec[v] == bitvec[w]:

vi = component[v]

58

wi = component[w]

if vi == wi:

raise Medium.MediumError("self-loop in contracted graph")

if wi in NG[vi]:

UF.union(NG[vi][wi],CG[v][w])

else:

NG[vi][wi] = CG[v][w]

CG = NG

Here with all edge equivalence classes represented by UF.

Turn them into a labeled graph and return it.

edges = getEdgesGraph(G)

result = {}

for edge in edges:

temp = set()

#temp.add(UF[edge[0],edge[1]])

#result[edge]=temp

59

if UF[edge[0],edge[1]] in result.keys():

result[UF[edge[0],edge[1]]].add(edge)

else:

temp.add(edge)

result[UF[edge[0],edge[1]]]=temp

return ComRedEc(arrangeDictionary(result))

#by BYAZ

#returns for (a,b) a tuple (a,b) if a>b else (b,a)

def Arrange2EleTuple(tup):

if tup[0] > tup[1]:

return (tup[1],tup[0])

else:

return tup

#by BYAZ

#returns all the edges from Graph G

60

def getEdgesGraph(G):

edges = set()

for ver in G:

for g in G[ver]:

edges.add(Arrange2EleTuple((ver,g)))

return edges

def MediumForPartialCube(G):

"""

Find a medium corresponding to the partial cube G.

Raises MediumError if G is not a partial cube.

Uses the O(n2̂) time algorithm of arxiv:0705.1025.

"""

L = PartialCubeEdgeLabeling(G)

M = Medium.LabeledGraphMedium(L)

Medium.RoutingTable(M) # verification step per arxiv:0705.1025

return M

def PartialCubeLabeling(G):

61

"""Return vertex labels with Hamming distance = graph distance."""

return Medium.HypercubeEmbedding(MediumForPartialCube(G))

def isPartialCube(G):

"""Test whether the given graph is a partial cube."""

try:

MediumForPartialCube(G)

return True

except Medium.MediumError:

return False

#by BYAZ

#removes duplicate ecs out of dictonary

def arrangeDictionary(inp_dict):

out_dict = {}

for t in inp_dict:

if Arrange2EleTuple(t) not in out_dict:

out_dict[Arrange2EleTuple(t)]=inp_dict[t]

else:

62

out_dict[Arrange2EleTuple(t)]=out_dict[Arrange2EleTuple(t)].union(inp_dict[t])

return out_dict

#by BYAZ

#gets dictionary and unions ecs which are not disjoint

def ComRedEc(ecsrep):

for ec in ecsrep:

ecsrep[ec].add(ec)

for key1, key2 in combinations(ecsrep.keys(), r = 2):

if not(ecsrep[key1].isdisjoint(ecsrep[key2])):

ecsrep[key1]=ecsrep[key1].union(ecsrep[key2])

ecsrep[key2]=ecsrep[key2].union(ecsrep[key1])

fr = {}

for ec in ecsrep:

if ecsrep[ec] not in fr.values():

fr[ec]=ecsrep[ec]

return fr

63

def PartialCubeECTest(G):

"""

Label edges of G by their equivalence classes in a partial cube structure.

We follow the algorithm of arxiv:0705.1025, in which a number of equivalence classes equal to the maximum

degree of G can be found simultaneously by a single breadth first search, using bitvectors. However, in

order to avoid deep recursions (problematic in Python) we use a union-find data structure to keep track of

edge identifications discovered so far. That is, we repeatedly contract our initial graph,maintaining as we do

the property that G[v][w] points to a union-find set representing edges in the original graph that have

been contracted to the single edge v-w.

"""

Some simple sanity checks

if not isUndirected(G):

raise Medium.MediumError("graph is not undirected")

L = list(StronglyConnectedComponents(G))

if len(L) != 1:

raise Medium.MediumError("graph is not connected")

64

Set up data structures for algorithm:

- UF: union find data structure representing known edge equivalences

- CG: contracted graph at current stage of algorithm

- LL: limit on number of remaining available labels

UF = UnionFind()

CG = {v:{w:(v,w) for w in G[v]} for v in G}

NL = len(CG)-1

Initial sanity check: are there few enough edges?

Needed so that we don’t try to use union-find on a dense

graph and incur superquadratic runtimes.

n = len(CG)

m = sum([len(CG[v]) for v in CG])

if 1«(m//n) > n:

raise Medium.MediumError("graph has too many edges")

Main contraction loop in place of the original algorithm’s recursion

while len(CG) > 1:

if not isBipartite(CG):

65

raise Medium.MediumError("graph is not bipartite")

Find max degree vertex in G, and update label limit

deg,root = max([(len(CG[v]),v) for v in CG])

if deg > NL:

raise Medium.MediumError("graph has too many equivalence classes")

NL -= deg

Set up bitvectors on vertices

bitvec = {v:0 for v in CG}

neighbors = {}

i = 0

for neighbor in CG[root]:

bitvec[neighbor] = 1«i

neighbors[1«i] = neighbor

i += 1

Breadth first search to propagate bitvectors to the rest of the graph

for LG in BFS.BreadthFirstLevels(CG,root):

66

for v in LG:

for w in LG[v]:

bitvec[w] |= bitvec[v]

Make graph of labeled edges and union them together

labeled = {v:set() for v in CG}

for v in CG:

for w in CG[v]:

diff = bitvec[v]∧bitvec[w]

if not diff or bitvec[w] & ∼ bitvec[v] == 0:

continue # zero edge or wrong direction

if diff not in neighbors:

raise Medium.MediumError("multiply-labeled edge")

neighbor = neighbors[diff]

UF.union(CG[v][w],CG[root][neighbor])

UF.union(CG[w][v],CG[neighbor][root])

labeled[v].add(w)

labeled[w].add(v)

67

Map vertices to components of labeled-edge graph

component = {}

compnum = 0

for SCC in StronglyConnectedComponents(labeled):

for v in SCC:

component[v] = compnum

compnum += 1

generate new compressed subgraph

NG = {i:{} for i in range(compnum)}

for v in CG:

for w in CG[v]:

if bitvec[v] == bitvec[w]:

vi = component[v]

wi = component[w]

if vi == wi:

raise Medium.MediumError("self-loop in contracted graph")

if wi in NG[vi]:

UF.union(NG[vi][wi],CG[v][w])

68

else:

NG[vi][wi] = CG[v][w]

CG = NG

Here with all edge equivalence classes represented by UF.

Turn them into a labeled graph and return it.

edges = getEdgesGraph(G)

for e in edges:

print(e,UF[e[0],e[1]])

print("——————–")

for e in edges:

print(e,UF[e[1],e[0]])

edges = getEdgesGraph(G)

result = {}

for edge in edges:

temp = set()

69

#temp.add(UF[edge[0],edge[1]])

#result[edge]=temp

if UF[edge[0],edge[1]] in result.keys():

result[UF[edge[0],edge[1]]].add(edge)

else:

temp.add(edge)

result[UF[edge[0],edge[1]]]=temp

print(result)

return arrangeDictionary(result)

70

C. Maple Code

with(LinearAlgebra);

Q_4_star := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_4_0.txt", delimiter = ",");

Q_4_star := map(t -> ‘if‘(type(t, string), parse(t), t), X_4_0);

factor(Determinant(X_4_0));

Q_4_1 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_4_1.txt", delimiter = ",");

Q_4_1 := map(t -> ‘if‘(type(t, string), parse(t), t), X_4_1);

factor(Determinant(X_4_1));

Q_4_2 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_4_2.txt", delimiter = ",");

Q_4_2 := map(t -> ‘if‘(type(t, string), parse(t), t), X_4_2);

factor(Determinant(X_4_2));

Q_4_3 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_4_3.txt", delimiter = ",");

Q_4_3 := map(t -> ‘if‘(type(t, string), parse(t), t), X_4_3);

factor(Determinant(X_4_3));

Q_4_4 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_4_4.txt", delimiter = ",");

71

Q_4_4 := map(t -> ‘if‘(type(t, string), parse(t), t), X_4_4);

factor(Determinant(X_4_4));

Q_5_star := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_5_star.txt", delimiter = ",");

Q_5_star := map(t -> ‘if‘(type(t, string), parse(t), t), Q_5_star);

Q_5_star := GaussianElimination(Q_5_star);

factor(Determinant(Q_5_star));

Q_5_1 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_5_1.txt", delimiter = ",");

Q_5_1 := map(t -> ‘if‘(type(t, string), parse(t), t), Q_5_1);

Q_5_1 := GaussianElimination(Q_5_1);

factor(Determinant(Q_5_1));

Q_5_2 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_5_2.txt", delimiter = ",");

Q_5_2 := map(t -> ‘if‘(type(t, string), parse(t), t), Q_5_2);

Q_5_2 := GaussianElimination(Q_5_2);

factor(Determinant(Q_5_2));

Q_5_3 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_5_3.txt", delimiter = ",");

72

Q_5_3 := map(t -> ‘if‘(type(t, string), parse(t), t), Q_5_3);

Q_5_3 := GaussianElimination(Q_5_3);

factor(Determinant(Q_5_3));

Q_5_4 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_5_4.txt", delimiter = ",");

Q_5_4 := map(t -> ‘if‘(type(t, string), parse(t), t), Q_5_4);

Q_5_4 := GaussianElimination(Q_5_4);

factor(Determinant(Q_5_4));

Q_5_5 := ImportMatrix("C:\Users\Administrator\Desktop\PC\VM_5_5.txt", delimiter = ",");

Q_5_5 := map(t -> ‘if‘(type(t, string), parse(t), t), Q_5_5);

Q_5_5 := GaussianElimination(Q_5_5);

factor(Determinant(Q_5_5));

73

References

[1] Hirokazu Nishimura, Susumu Kuroda: A Lost

Mathematician, Takeo Nakasawa The Forgotten Father

of Matroid Theory. Birkhäuser, c2009

[2] P. Gregor: Characterizations of hypercubes - a survey.

https://ktiml.mff.cuni.cz/ gregor/hypercube/hypercube-

course.htm, Lecture 4

[3] K. Ovchinnikov, Graphs and Cubes. Universitext,

Springer

[4] K. Knauer, T. Marc, On Tope Graphs of Complexes

of Oriented Matroids. Discrete & Computational Geom-

etry, 2020 - Springer

[5] W. Hochstättler, S. Keip, K. Knauer, The Signed

Varchenko Determinant for Complexes of Oriented Ma-

troids. https://arxiv.org/abs/2211.13986

[6] W. Hochstättler, V. Welker, The Varchenko de-

74

terminant for oriented matroids. https: Mathematische

Zeitschrift, 2019 - Springer

[7] R. Stanley, An Introduction to Hyperplane Arrange-

ments. IAS/Park City Mathematical Series, volume 14.

American Mathematical Society, Providence, RI, 2004

[8] D. Eppstein, J. Falmagne, S. Ovchinnikov, Media

Theory. Interdisciplinary Applied Mathematics, Springer

[9] D. Eppstein, Python library. https://ics.uci.edu/ epp-

stein/PADS/

[10] D. Eppstein, Recognizing partial cubes in quadratic

time. https://arxiv.org/abs/0705.1025

[11] H. Bandelt, V. Chepoi, K. Knauer, COMs: Com-

plexes of oriented matroids. Journal of Combinatorial

Theory, Series A

[12] A. Varchenko, Bilinear form of real configuration of

hyperplanes. Adv. Math. 97(1) (1993), 110–144

[13] P.M. Winkler, Isometric embedding in products of

complete graphs. Discrete Applied Mathematics 7 (2)

(1984), 221–225

[14] D.Z. Djokovic, Distance-preserving subgraphs of hy-

percubes. Journal of Combinatorial Theory, Series B 14

7 (1973), 263–267

75

	Abstract
	Course of investigation
	Historic context
	COMs
	Prerequisites and motivation
	Cubes and forbidden minors
	Varchenko matrix
	Motivation

	Overview and analysis of code
	Implementation
	Input-output structure
	Programm details
	Block1: Establishing the equivalence classes in python
	Block 2: Creating the varchenko matrix in python

	Determinant calculation
	Scalability

	Calculations
	Summary, results and conclusion
	Appendices
	Python Code: Calc_VM.py
	Python Code: PartialCube.py
	Maple Code
	References

