Markus Tausendpfund

Quantitative Datenanalyse. Eine Einführung mit R

Fakultät für Kultur- und Sozialwissenschaften

Vorwort der Modulbetreuung

Dieser Kurs bietet den Studierenden der Bildungswissenschaft eine Einführung in die quantitative Datenanalyse mit R bzw. R Studio. Das Werk dient der Vermittlung grundlegender Konzepte der Programmiersprache und eignet sich aufgrund seines hohen Praxisanteils insbesondere für den Einstieg in R. Der Studienbrief wurde von Prof. Dr. Markus Tausendpfund verfasst, der sich schwerpunktmäßig mit den Sozialwissenschaften befasst. In einigen Beispielen oder Datensätzen lässt sich deshalb kein direkter bildungswissenschaftlicher Bezug erkennen. Da die Bildungswissenschaft Teil der Sozialwissenschaften ist und beide auf nahezu identische Forschungsmethoden zurückgreifen, lassen sich die Methoden jedoch problemlos auf die bildungswissenschaftliche Forschungspraxis übertragen.

Den Autor Markus Tausendpfund möchten wir Ihnen gerne kurz vorstellen:

Prof. Dr. Markus Tausendpfund studierte Sozialwissenschaften mit den Schwerpunkten Soziologie, Sozialpsychologie, Methoden der empirischen Sozialforschung, Politische Soziologie und Arbeits- und Organisationspsychologie an der Universität Mannheim. 2012 schloss er seine Promotion zum Thema "Individuelle und kontextuelle Faktoren der politischen Unterstützung der Europäischen Union" und im Jahre 2022 seine Habilitation ab. Er leitet seit 2014 die Arbeitsstelle Quantitative Methoden an der FernUniversität in Hagen.

An dieser Stelle möchten wir uns insbesondere bei Markus Tausendpfund für die angenehme Kooperation und den stets interessanten Austausch bedanken.

Der Studienbrief wurde von Davin Akko, M.Sc. und Prof.'in Dr.'in Julia Schütz am Lehrgebiet Empirische Bildungsforschung redaktionell überarbeitet. Dabei wurden keine inhaltlichen Änderungen vorgenommen, sondern lediglich Änderungen aufgrund eines inklusiven Sprachgebrauchs eingefügt. Zudem werden Bildungswissenschaftler*innen explizit als Zielgruppe angesprochen. In der Moodle-Lernumgebung des Moduls wurden darüber hinaus Lehrvideos zum Umgang mit R veröffentlicht. Wir empfehlen, sich zunächst mit den Lehrvideos vertraut zu machen und diesen Studienbrief als zusätzliche Quelle heranzuziehen.

Wir wünschen Ihnen viel Erfolg bei der Bearbeitung und eine anregende Lektüre!

Davin Akko und Julia Schütz

IV Vorwort des Autors

Vorwort des Autors

Die vorliegende Lerneinheit behandelt die sozial- und bildungswissenschaftliche Datenanalyse mit R. Dabei werden Kenntnisse vermittelt, um einfache Analysen selbstständig mit der Software R durchführen zu können.

Der Text entspricht dabei weniger einem klassischen Lehrbuch, sondern eher einem Begleitkurs für die Auseinandersetzung mit dem Programm R bzw. RStudio. Die Lerneinheit soll das Interesse an sozial- und bildungswissenschaftlichen Fragestellungen wecken sowie die Möglichkeiten und Grenzen der quantitativen Datenanalyse aufzeigen.

Lehrmaterial, das in erster Linie zum Selbststudium angelegt ist, profitiert insbesondere durch Rückmeldungen der Leser:innen. Deshalb möchte ich mich herzlich bei allen Personen bedanken, die mich auf Fehler und Verbesserungsmöglichkeiten hingewiesen haben. Ein besonderer Dank geht an Verena Bade, Christian Cleve, Dorothee Köstlin und Simon Stocker, die sich intensiv mit der Lerneinheit beschäftigt und mich auf Ungenauigkeiten sowie Tippfehler aufmerksam gemacht haben.

Die vorliegende Lerneinheit ist kein "Endprodukt". Die regelmäßige Aktualisierung stellt eine Daueraufgabe dar. Deshalb freue ich mich sehr über alle Hinweise und Anregungen zur weiteren Verbesserung der Lerneinheit (E-Mail: Markus.Tausendpfund@fernuni-hagen.de).

Hagen, im Dezember 2023

Markus Tausendpfund

Inhaltsverzeichnis

Vo	rwort der N	Modulbetreuung	III
Vo	rwort des A	Autors	IV
Αb	bildungsvei	rzeichnis	IX
Tal	bellenverzei	ichnis	X
1	Einführung	g	11
	1.1 Sozia	al- und bildungswissenschaftlicher Forschungsprozess	12
	1.2 Quar	ntitative Datenanalyse	15
	1.3 Waru	um R?	16
	1.4 Struk	ctur der Lerneinheit	18
2	R und RSt	udio kennenlernen	19
	2.1 Insta	llation	19
	2.1.1	R	19
	2.1.2	RStudio	20
	2.1.3	Pakete	23
	2.1.4	Aktualisierungen	24
	2.1.5	posit Cloud: eine Alternative zur lokalen R-Installation	24
	2.2 Ein e	rster Überblick	25
	2.2.1	Console	25
	2.2.2	Skripte	27
	2.2.3	Befehle	28
	2.2.4	Objekte	30
	2.2.5	Vektoren	30
	2.2.6	Tabellen	32
	2.2.7	Erste Analysen	33
	2.2.8	Fehlende Werte	35
	2.2.9	Hilfe	36
3	Arbeiten r	nit R	37
	3.1 Pake	te installieren und laden	37
	3.2 Date	n laden	39
	3.3 Date	n importieren	40
	3.3.1	Excel	41
	3.3.2	SPSS	41
	3.3.3	CSV	42

	3.4 Objekttypen	43
	3.5 Datenstrukturen	47
	3.6 Saubere Skripte erstellen	47
	3.7 Projekte in R	49
4	Beispieldatensatz	50
	4.1 Daten und Pakete	50
	4.2 Beispieldatensatz kennenlernen	50
	4.3 Pipe-Operator	51
	4.4 Datenmanagement mit dplyr	52
	4.4.1 Variablen auswählen	52
	4.4.2 Variablen umbenennen	53
	4.4.3 Variablen filtern	54
	4.4.4 Variablen verändern	54
	4.4.5 Einfache Berechnungen	55
	4.4.6 Weitere Optionen	56
	4.5 Datenaufbereitung mit sjmisc	56
	4.5.1 Variablenwerte ändern	56
	4.5.2 Variablen zusammenfassen	59
	4.5.3 Werte zählen	61
	4.5.4 Weitere Optionen	61
	4.6 Labels konvertieren	62
5	Univariate Datenanalyse	64
	5.1 Daten und Pakete	64
	5.2 Häufigkeitstabellen	64
	5.3 Lagemaße	66
	5.4 Streuungsmaße	67
	5.5 Formmaße	68
	5.6 Kompakte Übersichten	70
6	Bivariate Datenanalyse	71
	6.1 Daten und Pakete	71
	6.2 Univariate Statistiken nach Gruppen	71
	6.3 Kreuztabellen	72
	6.4 Zusammenhangsmaße	75
	6.4.1 Nominalskalierte Merkmale	76

	6.4.2	Ordinalskalierte Merkmale	79
	6.4.3	Metrische Merkmale	81
7	Multivariat	te Datenanalyse	84
	7.1 Einfü	hrung	84
	7.2 Linea	re Regression	86
	7.2.1	Das Grundmodell	86
	7.2.2	Daten und Pakete	94
	7.2.3	Lineare Regression mit R	94
	7.2.4	Interpretation der Ergebnisse	97
	7.2.5	Weitere Möglichkeiten	100
	7.2.6	Anwendungsvoraussetzungen	106
	7.2.7	Praktische Hinweise	108
	7.3 Logis	tische Regression	109
	7.3.1	Das Grundmodell	109
	7.3.2	Daten und Pakete	115
	7.3.3	Logistische Regression mit R	116
	7.3.4	Interpretation der Ergebnisse	118
	7.3.5	Weitere Möglichkeiten	120
	7.3.6	Praktische Hinweise	126
8	Inferenzsta	atistik	128
	8.1 Date	n und Pakete	128
	8.2 Konf	idenzintervalle	129
	8.3 Mitte	elwertvergleiche (t-Test)	130
9	Grafiken		136
	9.1 Einfü	hrung	136
	9.2 Ausg	ewählte Diagramme	138
	9.2.1	Säulen- und Balkendiagramm	138
	9.2.2	Kreisdiagramm	140
	9.2.3	Histogramm	141
	9.2.4	Boxplot	142
	9.2.5	Streudiagramm	144
	9.2.6	Liniendiagramm	146
	9.3 Weite	ere Pakete	147
Dما	kata im l'Ihe	arhlick	1/12

VIII		Inhaltsverzeichnis

Beispieldatensatz im Überblick	150
Literaturverzeichnis	154

Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung 1: Phasen eines quantitativen Forschungsprojekts	14
Abbildung 2: The Comprehensive R Archive Network (CRAN)	19
Abbildung 3: Startbildschirm von R	20
Abbildung 4: RStudio mit drei Fenstern	21
Abbildung 5: RStudio mit vier Fenstern	22
Abbildung 6: Global Options bei RStudio	23
Abbildung 7: posit Cloud	25
Abbildung 8: Streudiagramm des Einkommens in Abhängigkeit des Alters	35
Abbildung 9: Installierte Pakete	38
Abbildung 10: "Import Dataset"-Funktion in RStudio	40
Abbildung 11: Excel-Datensatz importieren	41
Abbildung 12: SPSS-Datensatz importieren	42
Abbildung 13: Normalverteilung	69
Abbildung 14: Auswahl von regressionsanalytischen Verfahren	84
Abbildung 15: Streudiagramm von Alter und Einkommen	87
Abbildung 16: Streudiagramm von Einkommen und Alter mit Regressionsgerade	88
Abbildung 17: Empirischer und geschätzter Wert einer linearen Regression	89
Abbildung 18: Grafische Darstellung einer multiplen Regression	93
Abbildung 19: Lineare Regressionsfunktion	111
Abbildung 20: Logistische Regressionsfunktion	113
Abbildung 21: Logistische Regression (Beispieldaten)	115
Abbildung 22: Grafische Darstellung der logistischen Regression I	125
Abbildung 23: Grafische Darstellung der logistischen Regression II	126
Abbildung 24: Aussage über die Grundgesamtheit auf Basis einer Zufallsstichprobe	132
Abbildung 25: Säulen- und Balkendiagramm	139
Abbildung 26: Kreisdiagramm	140
Abbildung 27: Histogramm	141
Abbildung 28: Elemente eines Boxplots	142
Abbildung 29: Boxplots	143
Abbildung 30: Plotsymbole bei R	
Abbildung 31: Streudiagramm	145
Abbildung 32: Liniendiagramm	146

X Tabellenverzeichnis

Tabellenverzeichnis

Tabelle 1: SPSS, Stata und R im Überblick	17
Tabelle 2: Mathematische Funktionen in R	26
Tabelle 3: Logische Abfragen in R	27
Tabelle 4: Installieren und Laden von Paketen	38
Tabelle 5: Beispieldatensatz (peanuts_r)	39
Tabelle 6: Ausgewählte Funktionen zum Testen und Konvertieren von Objekten	45
Tabelle 7: Objekttypen in den Datensätzen	46
Tabelle 8: Ausgewählte Funktionen von dplyr	52
Tabelle 9: Auswahl von Filter-Möglichkeiten	54
Tabelle 10: Ausgewählte Möglichkeiten des rec-Arguments	58
Tabelle 11: Interpretation von Schiefe und Wölbung	70
Tabelle 12: Kreuztabelle zwischen Wahlbeteiligung und Bildung	74
Tabelle 13: Zusammenhangsmaße bei der bivariaten Datenanalyse	76
Tabelle 14: Arbeitstabelle für die Berechnung von Chi-Quadrat	77
Tabelle 15: Interpretation von Cramer's V	79
Tabelle 16: Interpretation von Spearman's Rho	81
Tabelle 17: Interpretation des Korrelationskoeffizienten nach Pearson	83
Tabelle 18: Beispieldaten für Alter und Einkommen	86
Tabelle 19: Bivariate Regression (Beispieldaten)	91
Tabelle 20: Beispieldaten für Alter, Einkommen und Berufserfahrung	92
Tabelle 21: Multiple Regression (Beispieldaten)	93
Tabelle 22: Bestimmungsfaktoren der Lebenszufriedenheit I	95
Tabelle 23: Bestimmungsfaktoren der Lebenszufriedenheit II	96
Tabelle 24: Bestimmungsfaktoren der Lebenszufriedenheit III	97
Tabelle 25: Bestimmungsfaktoren der Lebenszufriedenheit IV	101
Tabelle 26: Bestimmungsfaktoren der Lebenszufriedenheit V (standardisierte Koeffizienten)	
Tabelle 27: Bestimmungsfaktoren der Lebenszufriedenheit V (mit Faktoren)	104
Tabelle 28: Bestimmungsfaktoren der Lebenszufriedenheit VI (Regressionstabelle mit sjPlot)	105
Tabelle 29: Informationen zu einer linearen Regression	106
Tabelle 30: Beispieldaten für Rauchen und Alter in Jahren	110
Tabelle 31: Bestimmungsfaktoren des Tabakkonsums	114
Tabelle 32: Bestimmungsfaktoren der Wahlbeteiligung	117
Tabelle 33: Bedeutung der Asteriske	119
Tabelle 34: Logistische Regressionskoeffizienten und Odds Ratio im Vergleich	122
Tabelle 35: t-Test der Lebenszufriedenheit in Abhängigkeit des Geschlechts	133
Tabelle 36: t-Test der Demokratiezufriedenheit in Abhängigkeit des politischen Interesses	134
Tabelle 37: Argumente beim t-Test	135
Tabelle 38: Argumente bei Grafikbefehlen	136
Tabelle 39: Pakete zur Erstellung von Grafiken	147
Tabelle 40: Pakete im Überblick	
Tabelle 41: Beispieldatensatz im Überblick	150

1 Einführung

Die quantitative Datenanalyse ist die Phase im sozial- und bildungswissenschaftlichen Forschungsprozess, in der die theoretisch entwickelten Hypothesen empirisch geprüft werden. In diesem Kapitel werden die einzelnen Phasen des Forschungsprozesses knapp skizziert, die Bedeutung der Methodenkompetenz für die Auseinandersetzung mit empirischen Studien dargelegt und Statistikprogramme vorgestellt. Die Einführung schließt mit einem Ausblick auf die weiteren Kapitel dieser Lerneinheit und verweist auf ergänzende Materialien in der Moodle-Lernumgebung.

1.1 Sozial- und bildungswissenschaftlicher Forschungsprozess

In einem quantitativen Forschungsprojekt lassen sich idealtypisch mehrere Phasen unterscheiden

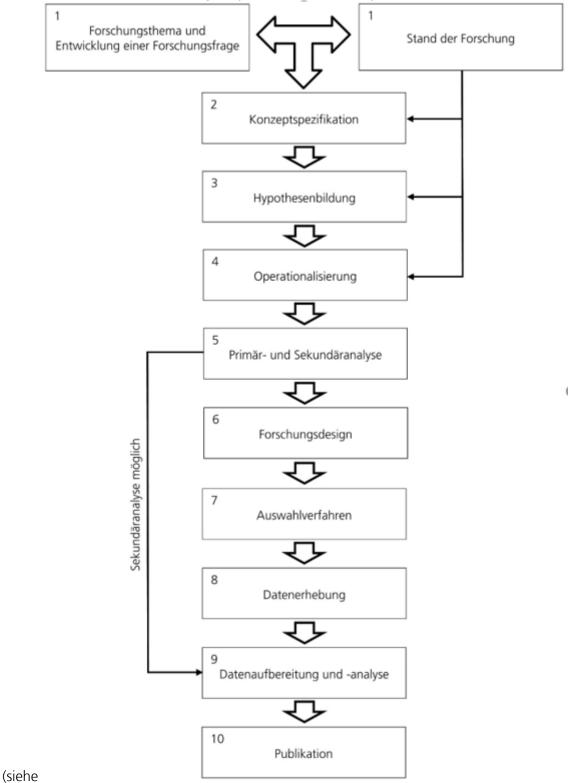


Abbildung 1). Nach der Entscheidung für ein Forschungsthema und der Entwicklung einer Forschungsfrage (1) müssen zunächst die zentralen Konzepte der Forschungsfrage identifiziert und theoretisch geklärt werden (2). Auf dieser Grundlage können Hypothesen formuliert (3) und Operationalisierungen der Konzepte (4) entwickelt werden (ausführlicher Tausendpfund 2018).

Diese Phasen eines Forschungsprojekts erfolgen in intensiver Auseinandersetzung mit der existierenden Fachliteratur. Nur wer den Forschungsstand zu seinem Forschungsthema kennt, kann eine gehaltvolle Forschungsfrage entwickeln. Die Auseinandersetzung mit der Fachliteratur ist aber auch für die Konzeptspezifikation und die Entwicklung von Hypothesen erforderlich. Schließlich ist auch bei der "Übersetzung" theoretischer Konzepte in empirische Indikatoren ein Überblick existierender Operationalisierungen notwendig.

Bei einer Primäranalyse werden neue Daten erhoben, um die Forschungsfrage zu untersuchen. Bei einer Sekundäranalyse werden existierende Daten genutzt, um die Forschungsfrage zu bearbeiten (5). Falls für die Bearbeitung einer Forschungsfrage bereits geeignetes Datenmaterial existiert, dann können die Phasen Forschungsdesign (6), Auswahlverfahren (7) und Datenerhebung (8) "übersprungen" werden.

Die Datenaufbereitung und -analyse stellt **eine** Phase in einem sozial- und bildungswissenschaftlichen wissenschaftlichen Forschungsprojekt dar (9). In dieser Phase werden die theoretisch formulierten Hypothesen empirisch geprüft. Mittlerweile existieren zahlreiche Verfahren der Datenanalyse (für einen Überblick siehe z.B. Wolf und Best 2010a; Backhaus et al. 2021); alle Verfahren setzen jedoch eine vorherige intensive Auseinandersetzung mit dem jeweiligen Forschungsstand voraus. Mit anderen Worten: Die Datenanalyse kann die vorherige Auseinandersetzung mit dem Forschungsstand nicht ersetzen.

In Publikationen (10) werden die Forschungsergebnisse der Öffentlichkeit zugänglich gemacht.

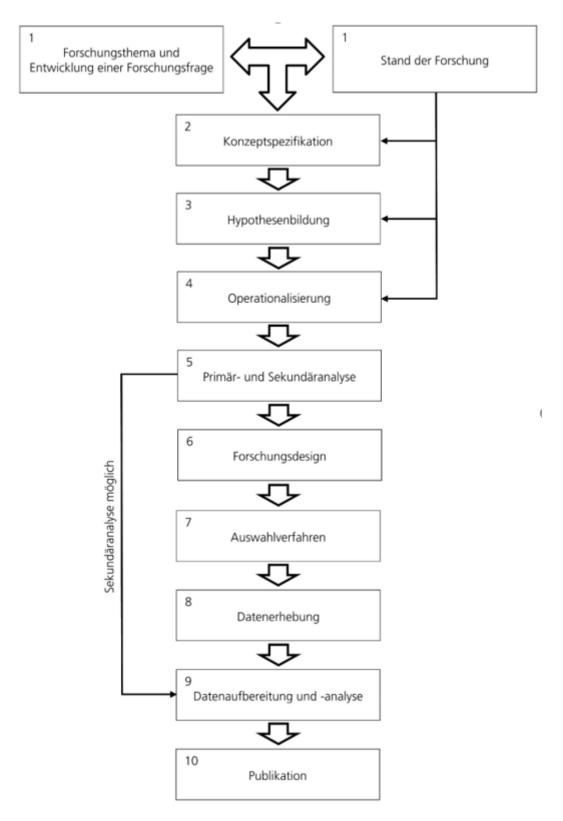


Abbildung 1: Phasen eines quantitativen Forschungsprojekts – Quelle: Eigene Darstellung

1.2 Quantitative Datenanalyse

Sozialwissenschaftler:innen wollen soziale Sachverhalte beschreiben und erklären (King et al. 1994, S. 7-8). Fördert ein höheres Einkommen die Lebenszufriedenheit? Warum beteiligen sich Menschen mit höherer Bildung eher an Wahlen als Personen mit geringer Bildung? Welche Faktoren beeinflussen den Tabakkonsum?

Ein Blick in die gängigen sozialwissenschaftlichen Fachzeitschriften zeigt, dass in Fachaufsätzen häufig quantitative Analyseverfahren genutzt werden, um entsprechende Forschungsfragen zu bearbeiten. Ohne grundlegende Methodenkompetenz können die empirischen Ergebnisse allerdings weder interpretiert noch kritisiert werden. Wer sich gehaltvoll mit einer (quantitativen) empirischen Studie auseinandersetzen möchte, der muss die Möglichkeiten und Grenzen quantitativer Analyseverfahren kennen.

Deshalb werden im Modul 2A1 "Empirische Bildungsforschung – Quantitative Methoden" im BA-Studiengang "Bildungswissenschaft" wichtige Verfahren der deskriptiven und schließenden Statistik behandelt. Videos, Tests und Übungsaufgaben in der Moodle-Lernumgebung sollen das Verständnis für die einzelnen Analyseverfahren fördern. Dabei werden beispielsweise das arithmetische Mittel und die Standardabweichung einzelner Merkmale (z.B. Alter) oder der Zusammenhang von zwei Merkmalen (z.B. Bildung und Einkommen) berechnet.

Mit der Zahl der Untersuchungsobjekte (z.B. Personen) steigt der rechnerische Aufwand allerdings erheblich an. Deshalb basieren solche Übungsaufgaben in der Regel auf kleinen – häufig auch fiktiven – Datensätzen. So wird beispielsweise das durchschnittliche Alter oder auch der Zusammenhang zwischen Bildung und Einkommen bei zehn Befragten ermittelt. Im Mittelpunkt stehen das Kennenlernen und Verstehen quantitativer Analyseverfahren, weniger die Auseinandersetzung mit "echten" Daten.

In der Forschungspraxis sind quantitativ arbeitende Sozial- und Bildungswissenschaftler:innen mit deutlich größeren Fallzahlen konfrontiert. Die Allgemeine

Bevölkerungsumfrage der Sozialwissenschaften (ALLBUS) enthält beispielsweise Informationen von knapp 3500 Befragten, der European Social Survey (ESS) sogar Angaben für mehrere zehntausend Personen. Es ist allerdings weder sinnvoll noch fördert es vermutlich das Verständnis, wenn das durchschnittliche Alter oder die Beziehung zwischen Bildung und Einkommen auf Basis von mehreren tausend Untersuchungsobjekten "händisch" berechnet wird. Für diese Aufgaben nutzten Sozial- und Bildungswissenschaftler:innen ein Statistikprogramm. Programme wie SPSS, Stata oder R sollen dem Anwender diese Routinetätigkeiten abnehmen.

An dieser Stelle setzt die vorliegende Lerneinheit an. Die Lerneinheit will einerseits die Vorgehensweise bei der quantitativen Datenanalyse verdeutlichen und andererseits praktische Kenntnisse in der Anwendung eines Statistikprogramms vermitteln. Die Lerneinheit behandelt dabei typische Herausforderungen der Datenaufbereitung und Datenanalyse im Rahmen eines quantitativen Forschungsprojekts. Für eine möglichst einfache und verständliche Präsentation werden andere Phasen des Forschungsprojekts (z.B. Konzeptspezifikation) an dieser Stelle zurückgestellt.

Die Kenntnis wichtiger quantitativer Analyseverfahren und die Anwendung in der Forschungspraxis sollen in erster Linie die gehaltvolle Auseinandersetzung mit empirischen Studien fördern. Wer aber selbst einmal mit einem Statistikprogramm gearbeitet hat, der kann meist besser die Herausforderungen in der Forschungspraxis nachvollziehen und entsprechende Entscheidungen bei einem veröffentlichten Aufsatz in einer Fachzeitschrift bewerten (z.B. Umgang mit fehlenden Werten). Deshalb dient die Arbeit mit einem Statistikprogramm auch unmittelbar der Lesefähigkeit für die Auseinandersetzung mit empirischen Studien.

Qualifikation auf dem Arbeitsmarkt

(Erste) Erfahrungen mit einem Statistikprogramm sind aber nicht nur wertvoll, um quantitative Forschungsergebnisse besser nachvollziehen zu können, sondern stellen auch eine wichtige Qualifikation auf dem Arbeitsmarkt dar. Dies unterstreicht eine inhaltsanalytische Auswertung der Stellenanzeigen in der Wochenzeitung "Die Zeit", bei fast jeder zweiten Ausschreibung werden Methodenkenntnisse erwartet (Schreiber 2016). Auch frühere Veröffentlichungen (z.B. Engel 2002; Schnapp et al. 2004) haben bereits auf die Praxisrelevanz der Methodenausbildung hingewiesen. Methodenkenntnisse bzw. die praktische Kompetenz mit einem Statistikprogramm haben unmittelbare Berufsrelevanz (Kohler 2016).

Heute stehen zahlreiche hochwertige Datensätze zur Verfügung, die sich hervorragend für sekundäranalytische Auswertungen eignen. Diese können (und sollen) auch im Rahmen des Studiums genutzt werden, um beispielsweise eine eigene empirische Haus- oder Abschlussarbeit im Bereich der Bildungswissenschaft zu verfassen. Neben der Kenntnis wichtiger quantitativer Analyseverfahren sind dafür natürlich auch praktische Fähigkeiten mit einem Statistikprogramm erforderlich.

1.3 Warum R?

Für die Datenanalyse stehen heute mehrere leistungsfähige Statistikprogramme zur Verfügung. Die bekanntesten Programme sind sicherlich SPSS, Stata und R. Gelegentlich sind im wissenschaftlichen Alltag emotionale Debatten überzeugter Anhänger der einzelnen Statistikprogramme zu beobachten, die die Vorteile (nicht aber die Nachteile) des "eigenen" Programms hervorheben und alternative Statistikprogramme abwerten. Von der deskriptiven Statistik (z.B. Median, Mittelwert) über einfache Zusammenhangsmaße (z.B. Cramer's V, Spearman's Rho, Pearson's r) bis hin zu fortgeschrittenen Analyseverfahren (z.B. lineare und logistische Regression) sowie Signifikanztests decken alle drei Programme die grundlegenden Verfahren der quantitativen Datenanalyse ab. Eine Übersicht der drei Programme bietet Tabelle 1.

Diese Lerneinheit bietet eine Einführung in die Programme R und RStudio. R ist ein Open-Source-Programm und frei (kostenlos) verfügbar. Auf der R-Homepage unter https://www.r-project.org finden sich Informationen zur aktuellen Programmversion und den Downloadmöglichkeiten. R wird weitgehend über eine Befehlssprache gesteuert. Allerdings existieren mittlerweile zahlreiche Ergänzungsprogramme, die den Einstieg in R erleichtern (z.B. RStudio). Durch weitere Programmpakete (Packages) kann der Leistungsumfang von R weit über die Standardverfahren hinaus erweitert werden. Die kostenfreie Nutzung und die flexible Erweiterung haben R eine ständig wachsende Anzahl an Nutzern beschert. Der Verein R Foundation, der das Urheberrecht von R besitzt und verwaltet, ist das "Sprachrohr" des Open-Source-Programms.

Tabelle 1: SPSS, Stata und R im Überblick

	SPSS	Stata	R
Menüsteuerung	Ja	Ja	Nein
Befehlssprache	Ja	Ja	Ja
Deutsche Sprachversion	Ja	Nein	Ja
Kosten	Ja	Ja	Nein
Homepage	https://e.feu.de/spss	www.stata.com	www.r-project.org
Einführende Literatur	Tausendpfund (2022)	Kohler und Kreuter (2017)	Luhmann (2020)

Quelle: Eigene Zusammenstellung

Seit einigen Jahren erleben die Sozialwissenschaften ein neues Zeitalter: Vielfalt und Umfang sozialwissenschaftlicher Daten nehmen rapide zu, unterschiedliche Datenbestände werden systematisch verknüpft und immer leistungsfähigere Hardware erlaubt die Analyse immer größerer Datenbestände. Diese Datenbestände sowie neuere Analysetechniken erfordern allerdings neue Kompetenzen, die im Rahmen der Methodenausbildung vermittelt werden müssen. Dabei ist auch die Softwareausbildung in den Blick zu nehmen, die für die Arbeit mit den alten und neuen Datenbeständen erforderlich ist (Munzert 2018; Döring und Hocks 2021). Dabei sprechen mehrere Gründe für R.

Erstens ist R ein Open-Source-Programm und steht für mehrere Plattformen (Windows, Mac und Linux) kostenfrei zur Verfügung. Über frei verfügbare Erweiterungen (Packages) kann der Funktionsumfang von R beträchtlich erweitert werden. Mit Blick auf Aufbereitung, Visualisierung, Analyse von Daten und Ankopplung an Datenbanksysteme fungiert R damit als Programmierumgebung, die für unterschiedlichste Aufgaben genutzt werden kann.

Zweitens ist R methoden-agnostisch und kann sowohl in der quantitativen und qualitativen Sozialund Bildungsforschung eingesetzt werden. Es existieren Erweiterungspakete sowohl für die quantitative (z.B. Regression, Faktorenanalyse) als auch für die qualitative Sozial- und Bildungsforschung (z.B. Qualitative Comparative Analysis).

Drittens gilt R als zukunftssicher. Als Open-Source-Programm wird R ständig weiterentwickelt. R überwindet zudem die Ein-Datensatzlogik und verfügt über Schnittstellen zu webbasierten Datensätzen. R kann daher auch genutzt werden, um unstrukturierte oder strukturierte Daten zu sammeln und damit weiterzuarbeiten.