15 Punkte Aufgabe 1 Laufzeitanalyse

6 Punkte (a) Die unten aufgeführten Rekursionsgleichungen klassifizieren verschiedene Arten von DAC-Algorithmen:

1. $f(N)=f(N / 2)+1, f(2)=1$
2. $g(N)=2 g(N / 2)+N, g(2)=1$
3. $h(N)=h(N / 2)+N, h(2)=1$

Lösen Sie die Rekursionsgleichungen f, g und h auf. Anstelle eines formalen Induktionsbeweises genügt es, N durch Teilfolgen der natürlichen Zahlen zu ersetzen, z. B. $N=2 n$ oder $N=2^{n}$, um so durch wiederholtes Einsetzen eine möglichst einfache Abschätzung zu bekommen.

9 Punkte
(b) Beweisen oder widerlegen Sie:
(i) $(n+1)!\stackrel{?}{=} \mathrm{O}(n!)$
(ii) $n^{n+1} \stackrel{?}{=} \mathrm{O}\left(n^{n}\right)$
(iii) $(n+1)^{n} \stackrel{?}{=} \mathrm{O}\left(n^{n}\right)$

Hinweis: Die Folge $\left(1+\frac{1}{n}\right)^{n}$ ist streng monoton wachsend und hat den Grenzwert $e \approx 2,718$.

Aufgabe 2 Skip-Liste

Eine Skip-Liste ist eine geordnete verkettete Liste, in der jeder Knoten eine variable Zahl height von Zeigern besitzt, so dass die i-ten Zeiger der Knoten eine verkettete Liste darstellen, die alle Knoten mit weniger als i Zeigern auslässt (skip). Dadurch ist es ggf. möglich, bei jedem Schritt einer Suche mehrere Stationen zu überspringen. Die Anfangs- und Endelemente der SkipListe haben immer die maximale Höhe maxHeight. Die Liste verwaltet einen Zähler enthaltener Schlüssel sowie Zeiger auf den Anfangs- und den Endknoten der Liste. Diese ausgezeichneten Knoten haben (als einzige Knoten) einen „ungültigen" Schlüssel (null). Folgendes Schaubild stellt eine Skip-Liste dar:

In der folgenden Abbildung sind zwei Suchen - nach „6" (erfolgreich) und "18" (vergeblich) - dargestellt:

Verzeigerung der Skip-Liste
Suche nach „,"
$\xrightarrow{\nrightarrow} \xrightarrow{\longrightarrow}$ Suche nach „6" (Fehlschlag)
Sei Elem ein geordneter Typ (d.h. es gibt die „<"-Operation). Es ergibt sich folgender Datentyp für eine Skip-Liste:
1 class SkipList \{

2
public SkipList ()$\{/ /$ erzeugt eine leere Skip-Liste...

Head = new Node(null, maxHeight);// ... bestehend aus einen ersten und...
Tail $=$ new $\operatorname{Node}($ null, maxHeight $) ; / /$... einem letzten Element mit key = null
noElems $=0$;
for(int $i=0 ; i<\operatorname{maxHeight} ; i++$)
Head.next $[i]=$ Tail;
\}

```
public void insert(Elem key) \{
    Node \(p=\) Head;
    Node[] refs \(=\) new Node[maxHeight];
    for (int \(k=0 ; k>\operatorname{maxHeight} ; k++\) ) \(\{r e f s[k]=\) Head; \(\}\)
    for (int \(k=\operatorname{maxHeight}-1 ; k>=0 ; k--)\{\)
        while (p.next \(!=\) Tail \&\& p.next \([k] . k e y<k e y)\{\)
            \(p=p\). next \([k]\);
            \(r e f s[k]=p ;\)
        \}
        \(p=p . \operatorname{next}[0] ;\)
        if ( \(p!=\) Tail \(\& \& p . k e y==k e y\) ) return;
    \}
    int \(h=\) this.idhgt () ;
    Node newElem = new Node(key, \(h\) );
    for (int \(k=0 ; k<\operatorname{maxHeight} \& \& k<h ; k++\) ) \{
        newElem.next \([k]=\operatorname{refs}[k] . n e x t[k]\);
        refs \([k] . n e x t[k]=\) newElem;
    \}
    noElems \({ }^{++;}\)
\}
private int \(i d h g t()\{\)
    int \(i=0\);
    while (Math.random ()\(<0.5\) ) \(i++\);
    return \(((i-1) \bmod \operatorname{maxHeight})+1\);
\}
```

47\}

4 Punkte (a) Erweitern Sie SkipList um eine Methode find (x) zur effizienten Suche nach einem Knoten mit Schlüssel x in der Skip-Liste.

2 Punkte (b) Betrachten Sie nun die oben angegebene Implementierung der insert-Methode. Erläutern Sie die generelle Funktionsweise der Methode.

4 Punkte

4 Punkte (d) Was ergibt sich für die erwartete Anzahl der Knoten einer bestimmten Höhe i in einer Skip-Liste, die mittels insert() aufgebaut wird? Was gilt für die erwartete Anzahl benachbarter Knoten mit einer Höhe $\leq i$ (also zwischen zwei Knoten, deren Höhe größer als i ist)?
Hinweis: Zur Vereinfachung dürfen Sie ab hier statt maxHeight $=5$ eine beliebig groBe Maximalhöhe voraussetzen. Ein formaler Beweis mit vollständiger Rechnung ist hier nicht erforderlich.

4 Punkte

2 Punkte
(f) Bleibt das Verteilungsmuster erhalten, wenn zufällige oder zusammenhängende Teilfolgen der Skip-Liste aus der Skip-Liste gelöscht werden? Begründen Sie! Hinweis: Beim Löschen wird der betroffene Knoten n,,ausgeschnitten" und alle Zeiger der Höhe h auf n werden auf den entsprechend hohen Nachfolger von n,umgebogen".

Aufgabe 3 CocktailSort

Gegeben sei folgender Algorithmus:

```
algorithm CocktailSort( \(A\) : array of sortable items )
    swapped \(:=\) true;
    while swapped \(=\) true do
        swapped := false;
        for \(i:=0\) to length \((A)-2\) do
            if \(A[i]>A[i+1]\) then
                \(\operatorname{swap}(A[i], A[i+1])\);
                swapped \(:=\) true;
            endif
        endfor
        if swapped \(=\) false then
            exit;
        endif
        swapped \(:=\) false;
        for \(i:=\operatorname{length}(A)-2\) downto 0 do
            if \(A[i]>A[i+1]\) then
                \(\operatorname{swap}(A[i], A[i+1])\);
                swapped \(:=\) true;
            endif
        endfor
    endwhile
endalgorithm.
```

Die Funktion length (A) liefert die Größe eines Arrays A. Arrays werden von 0 bis length $(A)-1$ indiziert. Die Methode swap (X, Y) vertauscht die Inhalte der Variablen X und Y. Das Schlüsselwort exit bewirkt, dass die Bearbeitung des Algorithmus unmittelbar beendet wird.
(a) Wie funktioniert CocktailSort? Beschreiben Sie die Funktionsweise!
(b) Geben Sie die Komplexitätsklasse von CocktailSort bezüglich Laufzeit und Speicherplatz an und begründen Sie! Ist CocktailSort ein optimales Sortierverfahren?
(c) Kategorisieren Sie CocktailSort anhand der fünf im Kurs vorgestellten Kriterien.
(d) Betrachten und beschreiben Sie die Behandlung des kleinsten und größten Elements der Eingabe unter CocktailSort.
(e) Erklären Sie, wie Sie unter Ausnutzung der Beobachtungen aus (d) die Laufzeit von CocktailSort verbessern können!
(f) Welche Komplexität hat das verbesserte Verfahren? Begründen Sie!

2 Punkte

3 Punkte
3 Punkte
3 Punkte

3 Punkte 3 Punkte

14 Punkte Aufgabe 4 Allgemeiner Baum

Ein allgemeiner Baum kann pro Knoten beliebig viele Söhne haben und kann auch als ungerichteter Graph ohne Zyklen aufgefasst werden. Gesucht ist nun ein solcher allgemeiner Baum mit folgenden Eigenschaften:

- Ein preorder-Durchlauf beginnend am Knoten mit der Markierung C ergibt die Knotenfolge

$$
C, X, R, T, S, U, W, J, K, L, V, M
$$

- Ein postorder-Durchlauf durch den Baum erzeugt die Knotenfolge

$$
R, T, U, W, S, X, J, V, L, M, K, C
$$

Dabei sind preorder- und postorder-Durchlauf für einen allgemeinen Baum T mit Wurzelknoten V mit k Sohnknoten $S_{1}, S_{2}, \ldots, S_{k}$ von V wie folgt definiert:

$\operatorname{preorder}(T)=<V$, preorder $\left(S_{1}\right)$, preorder $\left(S_{2}\right), \ldots, \operatorname{preorder}\left(S_{k}\right)>$ $\operatorname{postorder}(T)=<\operatorname{postorder}\left(S_{1}\right), \operatorname{postorder}\left(S_{2}\right), \ldots, \operatorname{postorder}\left(S_{k}\right)$, I>
Zeichnen Sie den durch die obigen Folgen gegebenen allgemeinen Baum.

Aufgabe $5 \quad$ Plane-Sweep

18 Punkte

3 Punkte

3 Punkte

12 Punkte

In dieser Szene sollen alle Paare (Punkt, Rechteck) gefunden werden, bei denen der Punkt im Rechteck liegt. Wenden Sie dazu den Algorithmus aus dem Kurstext an, der das Punkteinschlußproblem optimal löst.
Ermitteln Sie zunächst eine Liste der Haltepunkte und führen Sie dann eine Ablaufverfolgung des Algorithmus durch, indem Sie die Sweep-Status-Struktur nach dem Einfügen bzw. Löschen von einem oder mehreren Einträgen (vor jeder Suche) neu zeichnen. Beschreiben Sie außerdem die Suchoperationen auf der Sweep-StatusStruktur und geben Sie die gefundenen Punkteinschlüsse an.

