<u>Aufgabe 1</u> (18 Punkte)

Es wird jede <u>richtig beantwortete Frage mit 1 Punkt</u>, jede <u>falsch beantwortete</u> <u>Frage mit -1 Punkt</u> und jede nicht beantwortete Frage mit 0 Punkten bewertet. Insgesamt können für jede Teilaufgabe nur nicht negative Punktzahlen erzielt werden.

Um eine Frage zu beantworten, kreuzen Sie das entsprechenden Kästchen in der Zeile an. Falls Sie eine Frage nicht beantworten wollen, dann machen Sie bitte kein Kreuz in der Zeile.

Vergessen Sie bitte nicht, Ihre Lösung für diese Aufgabe abzugeben!

(i) Welche der folgenden Aussagen ist/sind korrekt?

korrekt falsch

TOTI OTLO		10010011		
[]	[]	$\forall k \in \mathbb{N} \ 2^{k^2 \cdot \log(n)} \in O(n^{2 \cdot k})$
[]	[]	Für alle $f : \mathbb{N} \to \mathbb{N}$ gilt: Jede Sprache in $\operatorname{ZEIT}(f)$ ist entscheidbar.
[]	[]	Für alle $f: \mathbb{N} \to \mathbb{N}$ gilt: Es existiert eine entscheidbare Sprache
				in $ZEIT(f)$.
[]	[]	Für alle Funktionen $f, g : \mathbb{N} \to \mathbb{N}$ gilt:
				$\operatorname{ZEIT}(f) \subsetneq \operatorname{ZEIT}(g) \Rightarrow g$ zeitkonstruierbar.
2	-	r	-9	

- $[] [] Es ist bekannt, dass ein k \in \mathbb{N} existient, so dass BAND(log n) \subsetneq ZEIT(n^k).$
 -] [] Die Funktion $f(n) = \left\lceil \sqrt[3]{n^5} \right\rceil$ ist zeitkonstruierbar.

(ii) Welche der folgenden Aussagen ist/sind korrekt?

korrekt falsch

ſ

ſ

٣	1	F	7	
L		L]	Für alle $A \in NP$ gilt $A \in P$.
[]	Ĺ]	Es ist bekannt, dass NLOGSPACE \subsetneq NP gilt.
[]	[]	$CLIQUE \leq_{pol} 3SAT$
[]]	Es existiert eine Funktion $f : \mathbb{N} \to \mathbb{N}$ so dass $\mathbb{NP} \subsetneq \mathbb{Z}\mathrm{EIT}(f)$.
Ľ]	Ĺ]	Aus $A \leq_{pol} B$ und $B \in NBAND(n^3)$ folgt $A \in PSPACE$.
[]	[]	Es ist bekannt, dass $GAP \leq_{pol} 3SAT$.

(iii) Welche der folgenden Aussagen ist/sind korrekt? korrekt falsch

- [] Die Sprache $\{ww^Rw \mid w \in \{0,1\}^*\}$ ist kontextfrei.
- [] Die Sprache $\{u \mid u \in \{0, 1\}^*\}$ ist deterministisch kontextfrei.
-] [] Sei $G = (\{S, T\}, \{a, b\}, \{S \to aSb|T|U, T \to aT|a, U \to bU|b\}, S).$ L(G) ist regulär.
-] [] Sei $G = (\{S, T\}, \{a, b\}, \{S \to aSb|T|U|\varepsilon, T \to aT|a, U \to bU|b\}, S).$ L(G) ist regulär.
-] [] Für zwei beliebige reguläre Mengen L_1 und L_2 ist entscheidbar, ob $L_1 \subseteq L_2$ gilt.
- $\begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} \end{bmatrix}$ Für beliebige kontextfreie Sprachen L gilt $L \in \mathbb{P}$.

<u>Aufgabe 2</u> (11 Punkte)

- (a) Geben Sie Definitionen an für:
 - (i) $f: \mathbb{N} \to \mathbb{N}$ ist bandkonstruierbar,
 - (ii) FBAND_{Σ}(f),
 - (iii) die Sprache L_M einer Kontrollturingmaschine M,
 - (iv) NP-vollständige Sprache,
 - (v) Chomsky-Normalform.

(5 Punkte)

- (b) Formulieren Sie
 - (i) den Zusammenhang zwischen Zeit- und Band-Komplexitätsklassen,
 - (ii) den Zeithierarchiesatz,
 - (iii) das Pumping-Lemma für kontextfreie Sprachen.
 - (6 Punkte)

<u>Aufgabe 3</u> (12 Punkte)

Sei L eine beliebige Sprache, $L \subseteq \mathbb{N}$, und bezeichne cf_L wie gewohnt die charakteristische Funktion von L. Zeigen Sie:

$$\bigcup_{k \in \mathbb{N}} \text{BAND}(\log^k(n) + cf_L(n)) \subsetneqq \text{BAND}(n) \subsetneqq \text{BAND}(n \cdot \log(n) + cf_L(n))$$

Aufgabe 4 (14 Punkte)

Geben Sie alle Ihnen bekannten nicht-trivialen Inklusionen zwischen den folgenden Klassen an und begründen Sie 3 dieser Inklusionen:

P, LOGSPACE, NLOGSPACE, BAND (n^3) , BAND $(\log^3(n))$, ZEIT (2^n) , PSPACE, NPSPACE. (Sollten Inklusionen als echt bekannt sein, so werten wir diese nur, wenn sie als echt notiert sind.)

Aufgabe 5 (12 Punkte)

Gibt es NP-vollständige Sprachen in $BAND(\lceil \sqrt{n} \rceil)$? (Beweis)

<u>Aufgabe 6</u> (16 Punkte)

Geben Sie für die Sprache

 $L := \{ w \in \{a, b\}^* \mid w \text{ endet mit einem } a \text{ und } \#_a(w) \ge 3 \}$

- a) einen determinierten endlichen Automaten A an, mit L(A) = L, (2 Punkte)
- b) einen determinierten endlichen Automaten A an, mit $L(A) = \{a, b\}^* \setminus L$, (2 Punkte)
- c) eine rechtslineare Grammatik G in Normalform an, mit L(G) = L. (2 Punkte)
- d) Zeigen Sie die Korrektheit <u>einer</u> Ihrer Automaten <u>oder</u> Ihrer Grammatik. (10 Punkte)

Aufgabe 7 (17 Punkte)

Gegeben sei die Sprache

 $L := \{ xay \in \{a, b\}^* \mid lg(x) = lg(y) \land \#_b(x) = \#_a(y) \}.$

- a) Geben Sie eine kontextfreie Grammatik G mit L(G) = L an. (2 Punkte)
- b) Geben Sie einen Kellerautomaten A mit N(A) = L an. (4 Punkte)
- c) Zeigen Sie, dass L nicht regulär ist. (5 Punkte)
- d) Zeigen Sie, dass $L \cap L^R$ nicht kontextfrei ist. (6 Punkte)