Mengen

(10 Punkte)

	444	=	⊆	2	€	1	
(1)	$\overline{A}\cap \overline{B}$		×				$\overline{(A\cap B)}$
(2)	$\overline{A} \cap \overline{B}$	×	×	×			$\overline{(A \cup B)}$
(3)	A	150	111	ia T	×	K K	$\mathcal{P}(A)$
(4)	{A}		×				$\mathcal{P}(A)$
(5)	Ø		×		×		$\mathcal{P}(A)$
(6)	$\mathcal{P}(A)$		×				$\mathcal{P}(A) \cup \mathcal{P}(B)$
(7)	$\mathcal{P}(A \cup B)$			×			$\mathcal{P}(A) \cup \mathcal{P}(B)$
(8)	A	7,2	be		e u	×	$A \times B$
(9)	$(A \times B) \cup (A' \times B')$		×				$(A \cup A') \times (B \cup B')$
(10)	$(A \times B) \cap (A' \times B')$	×	×	×			$(A\cap A')\times (B\cap B')$

Erläuterungen:

Zu (1) und (2): Die in (2) behauptete Gleichheit ist eines der De Morganschen Gesetze. Aus

 $A \cap B \subseteq A \cup B$

folgt

 $\overline{A \cap B} \supseteq \overline{(A \cup B)},$

also

$$\overline{A}\cap \overline{B}=\overline{(A\cup B)}\subseteq \overline{(A\cap B)},$$

daher gilt die in (1) behauptete Teilmengenbeziehung. Die umgekehrte Inklusion gilt nicht: Für

$$\Omega := \{1, 2, 3, 4\}, A := \{1, 2\}, B := \{2, 3\}$$

ist

$$\overline{A} \cap \overline{B} = \{3,4\} \cap \{1,4\} = \{4\}$$

und

$$\overline{(A \cap B)} = \overline{\{2\}} = \{1, 3, 4\}.$$

Zu (3) und (4): Die Elemente von $\mathcal{P}(A)$ sind alle Teilmengen von A, insbesondere ist also $A \in \mathcal{P}(A)$ und folglich $\{A\} \subseteq \mathcal{P}(A)$, jedoch nicht $A \subseteq \mathcal{P}(A)$.

Zu (5): Die leere Menge ist Teilmenge einer jeden Menge. Als solche ist sie sowohl Element als auch Teilmenge jeder Potenzmenge.

Zu (6) und (7): (6) ist klar, da für alle Mengen A, B gilt $A \subseteq A \cup B$. Ist M eine Teilmenge von A, dann ist M auch eine Teilmenge von $A \cup B$, d.h., jedes Element von $\mathcal{P}(A)$ ist auch Element von $\mathcal{P}(A \cup B)$. In die andere Richtung gilt die Inklusion nicht: Z.B. ist $A \cup B \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.

Zu (9): Sei

$$(x,y) \in (A \times B) \cup (A' \times B').$$

Dann folgt

$$((x,y) \in (A \times B))$$
 oder $((x,y) \in (A' \times B'))$.

Also ist

$$(x \in A \text{ und } y \in B) \text{ oder } (x \in A' \text{ und } y \in B'),$$

also insbesondere

$$x \in A \cup A'$$
 und $y \in B \cup B'$.

Die umgekehrte Inklusion gilt nicht:

Sei

$$\Omega:=\{1,2,3,4\}, A:=\{1,2\}, A':=\{3,4\}, B:=\{2,3\}, B':=\{1,4\}.$$

Dann ist

$$(A \cup A') \times (B \cup B') = \Omega \times \Omega,$$

aber z.B. ist

$$(1,1)\not\in (A\times B)\cup (A'\times B').$$

Zu (10):

$$(x,y)\in (A\times B)\cap (A'\times B')$$

 $\Leftrightarrow \ x \in A, y \in B \text{ und } x \in A', y \in B'$

 $\Leftrightarrow x \in A \cap A', y \in B \cap B'$

$$\Leftrightarrow$$
 $(x, y) \in (A \cap A') \times (B \cap B')$

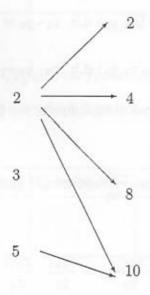
Relationen

(10 Punkte)

zu Teil 1 (5 Pkt.):

 $M_1:=\{2,3,5\},\ M_2:=\{2,4,8,10\},\ (x,y)\in teilt:\Leftrightarrow \text{ es existiert ein }n\in\mathbb{N}\text{ mit }nx=y.$ Dann ist

- teilt = {(2,2), (2,4), (2,8), (2,10), (5,10)}
- · graphische Darstellung:



• Matrixdarstellung:

$$\begin{array}{c|c} y \\ \hline x & 1 \end{array}$$

x teilt y

zu Teil 2 (5 Pkt.):

Auf \mathbb{N} (hier sei $0 \notin \mathbb{N}$) ist die durch

$$(x_1,y_1) \sim (x_2,y_2) :\Leftrightarrow x_1 \cdot y_2 = x_2 \cdot y_1$$

beschriebene zweistellige Relation \sim eine Äquivalenz
relation:

Symmetrie und Reflexivität von \sim folgen sofort aus der Symmetrie von =. Zu zeigen bleibt die Transitivität, also

$$(x_1,y_1) \sim (x_2,y_2)$$
 und $(x_2,y_2) \sim (x_3,y_3) \ \Rightarrow (x_1,y_1) \sim (x_3,y_3)$

Sei also

$$(x_1, y_1) \sim (x_2, y_2)$$
 d.h. $x_1 \cdot y_2 = x_2 \cdot y_1$ (1)

und

$$(x_2, y_2) \sim (x_3, y_3)$$
 d.h. $x_2 \cdot y_3 = x_3 \cdot y_2$ (2)

Da alle x_i und y_i von Null verschieden sind, können wir (1) und (2) nach x_1 bzw. y_3 auflösen und erhalten

(1)
$$x_1 = \frac{x_2 y_1}{y_2}$$
 sowie (2) $y_3 = \frac{x_3 y_2}{x_2}$

und damit folgt

$$x_1y_3 = \frac{x_2y_1}{y_2}y_3 = \frac{x_2y_1}{y_2} \cdot \frac{x_3y_2}{x_2} = y_1x_3$$

also folgt $(x_1, y_1) \sim (x_3, y_3)$.

Funktionen

(12 Punkte)

$$G := \{2n \mid n \in \mathbb{N}\}$$

$$U := \{2n+1 \mid n \in \mathbb{N}\}$$

 $P := \{p \mid p \text{ ist eine Primzahl}\}$

	injektiv	nicht injektiv	surjektiv	nicht surjektiv
$f_1 : P \times P \to \mathbb{N}$				
$(x,y) \mapsto xy$		×		×

Begründung:

Da beispielsweise $f_1(2,3) = 6 = f_1(3,2)$ gilt, ist f_1 nicht injektiv.

 f_1 ist auch nicht surjektiv, denn beispielsweise 8 lässt sich nicht als Produkt zweier Primzahlen darstellen.

	injektiv	nicht injektiv	surjektiv	nicht surjektiv
$f_2: P \times P \to \mathbb{N}$		and leaded of the	a European	ord / marie
$(x,y) \mapsto xy^2$	×			×

Begründung:

Für die Injektivität ist zu zeigen:

$$f_2(x_1, y_1) = f_2(x_2, y_2) \Rightarrow (x_1, y_1) = (x_2, y_2)$$

Sei also

$$f_2(x_1, y_1) = f_2(x_2, y_2),$$

also

$$x_1 y_1^2 = x_2 y_2^2$$

für Primzahlen x_1, x_2, y_1, y_2 . Dann gilt

$$x_1 \mid x_2 y_2^2$$
.

Allgemein gilt: Teilt eine Primzahl ein Produkt, dann teilt sie eines seiner Faktoren, d.h. es gilt

(1)
$$x_1 \mid x_2 \text{ oder } (2) x_1 \mid y_2^2$$
.

Da beide x_i Primzahlen sind, folgt aus (1) schon $x_1 = x_2$ und damit

$$y_1^2 = y_2^2$$

woraus auch

$$y_1 = y_2$$

folgt.

Gilt (2), dann haben wir wegen der Primzahleigenschaft

$$x_1 = y_2$$
, d.h. $y_2 y_1^2 = x_2 y_2^2$,

dann ist aber

$$y_1^2 = x_2 y_2$$
 und somit $y_1 = x_2 = y_2 = x_1$,

also ebenfalls

$$(x_1, y_1) = (x_2, y_2).$$

 f_2 ist nicht surjektiv: Beispielsweise hat 16 kein Urbild.

	injektiv	nicht injektiv	surjektiv	nicht surjektiv
$f_3: G \times U \to \mathbb{N}$			all my	(venior) (cita)
$(x,y)\mapsto xy$		×		×

Begründung:

 $f_3(6,3) = 18 = f_3(2,9)$, also ist f_3 nicht injektiv.

 f_3 ist nicht surjektiv, denn im Bild von f_3 liegen nur gerade Zahlen.

		injektiv	nicht injektiv	surjektiv	nicht surjektiv
f_4 :	$\mathbb{N}\times\mathbb{N}\to\mathbb{N}$				
	$(x,y)\mapsto xy^2$		×	×	The state of the s

Begründung:

 $f_4(4,2) = 4 \cdot 2^2 = 16 = 1 \cdot 4^2 = f_4(1,4) \Rightarrow f_4$ ist nicht injektiv.

Sei $n \in \mathbb{N}$. Es ist $f_4(n,1) = n \cdot 1^2 = n$, f_4 ist also surjektiv.

zu Aufgabe 4 Aussagenlogik – Normalformen (10 Punkte)

zu Teil 1 (5 Pkt.):

$$G := \big(B \to (\neg A \to C)\big) \land \neg \big((C \lor \neg D \lor \neg E) \to (A \land \neg B \land \neg D)\big)$$

	Formel G'	$G \equiv G'$	$G \not\equiv G'$
(1	$(A \vee \neg B \vee C) \wedge (\neg A \vee B \vee D) \wedge (C \vee \neg D \vee \neg E)$	×	
(2	$(A \vee \neg B \vee C) \wedge (\neg A \vee B \vee C \vee \neg E)$		×
(3	$C \lor \neg E$		×
(4	$(A \vee \neg B \vee C) \wedge (\neg A \vee B \vee D) \wedge (C \vee \neg D \vee \neg E) \wedge (\neg A \vee B \vee C \vee \neg E)$	×	
(5	$(A \vee \neg A \vee C \vee \neg D) \wedge (B \vee \neg D \vee \neg E)$		×

Die folgende Tabelle stellt abweichende Wertverläufe dar:

	A	В	C	D	E	$Ausw_I(G)$	$Ausw_I(G')$
zu(2)	T	F	F	F	F	F	T
zu(3)	T	F	T	F	F	F	T
zu(5)	F	T	F	F	F	F	T

zu Teil 2 (5 Pkt.):

Disjunktive Normalform zu:

$$G := \neg(A \leftrightarrow (B \rightarrow C))$$

Wir verwenden die Äquivalenz $\neg (F \rightarrow G) \equiv F \land \neg G$:

$$G \equiv \neg ((A \to (B \to C)) \land ((B \to C) \to A))$$

$$\equiv \neg (A \to (B \to C)) \lor \neg ((B \to C) \to A)$$

$$\equiv (A \land \neg (B \to C)) \lor ((B \to C) \land \neg A)$$

$$\equiv (A \land B \land \neg C) \lor ((\neg B \lor C) \land \neg A)$$

$$\equiv (A \land B \land \neg C) \lor (\neg A \land \neg B) \lor (\neg A \land C)$$

Aussagenlogik

(9 Punkte)

zu Teil 1 (4 Pkt.):

Die Formel

$$G := \neg(A \to B) \vee \neg(B \to A)$$

hat die beiden Modelle I_1, I_2 mit

•
$$I_1(A) = T, I_1(B) = F$$
 und

•
$$I_2(A) = F, I_2(B) = T$$

zu Teil 2 (5 Pkt.):

	Formel	entspricht	entspricht nicht
(1)	$\underline{(C \to (A \to D))} \land (B \to \neg D) \land \underline{(\neg B \to (C \land D))}$	and a star	×
(2)	$(C \vee \neg (A \to D)) \wedge \underline{(B \vee \neg D)} \wedge \underline{(B \vee \neg (C \wedge D))}$		×
(3)	$((A \to D) \to C) \land (B \to \neg D) \land (\neg B \lor \neg (C \land D))$	×	
(4)	$((A \land \neg D) \lor C) \land (B \to \neg D) \land \neg (B \land C \land D)$	×	
(5)	$((A \to D) \to C) \land (B \to \neg D) \land \underline{(B \lor \neg(C \land D))}$	19.11676	×

Die jeweils unterstrichenen Teilformeln zeigen, an welcher Stelle die Formel nicht mit dem angegebenen Sachverhalt übereinstimmt. In (1) ist die Implikationsrichtung falsch, in (2) fehlt ein Negationszeichen.

zu Aufgabe 6

Aussagenlogik

(10 Punkte)

/23		stimmt	stimmt nicht
(1)	$Ausw_I(A \wedge B) = I(A) \cdot I(B)$		
(2)	$Ausw_I(G \wedge G') = Ausw_I(G) \cdot Ausw_I(G')$		
(3)	$Ausw_{\overline{I}}(G) = 1 - Ausw_{\overline{I}}(G)$	×	
(4)	$Ausw_{\overline{I}}(G) = Ausw_{\overline{I}}(\neg G)$		×
(5)	$Ausw_I(A \leftrightarrow B) = 1 - max\{I(A) \cdot (1 - I(B)), I(B) \cdot (1 - I(A))\}$	_	×

Zu (3): Beispielsweise für $G := A \vee \neg A$ ist $Ausw_I(G) = Ausw_{\overline{I}}(G) = 1$ für jede Belegung I.

Zu (4): Beispiel: $G := A \vee B$, I(A) = 1, I(B) = 0: Dann ist

$$Ausw_{\overline{I}}(G) = 1 \neq 0 = Ausw_{\overline{I}}(\neg G)$$

(5) lässt sich folgendermaßen erklären:

$$Ausw_I(A \leftrightarrow B) = \begin{cases} 1 & \text{falls } I(A) = I(B), \\ 0 & \text{sonst} \end{cases}$$

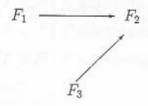
Für I(A) = I(B) ist $\max\{I(A) \cdot (1 - I(B)), I(B)(1 - I(A))\} = 0$, und für $I(A) \neq I(B)$ ist $\max\{I(A) \cdot (1 - I(B)), I(B) \cdot (1 - I(A))\} = 1$, wie man leicht nachprüft. Daraus ergibt sich die angegebene Rechenvorschrift.

zu Aufgabe 7

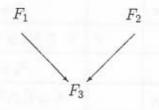
Prädikatenlogik

(9 Punkte)

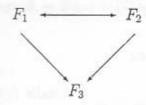
zu Teil 1 (3 Pkt.):



zu Teil 2 (3 Pkt.):



zu Teil 3 (3 Pkt.):



zu Aufgabe 8 Prädikatenlogik - Normalformen (6 Punkte)

$$F := \left(\forall x \ A(x) \rightarrow (\exists y \ B(x,y)) \right) \wedge \left(\forall x \ C(x) \rightarrow (\neg \exists y \ B(x,y)) \right)$$

$$F \equiv (\forall x \neg A(x) \lor \exists y \ B(x,y)) \land (\forall u \ C(u) \rightarrow \neg \exists v \ B(u,v)) \quad \text{Bereinigen}$$

$$\equiv (\forall x \exists y \ \neg A(x) \lor B(x,y)) \land (\forall u \neg C(u) \lor \forall v \ \neg B(u,v)) \quad \text{Quantor vorziehen;} \rightarrow \text{auflösen}$$

$$\equiv (\forall x \exists y \ \neg A(x) \lor B(x,y)) \land (\forall u \forall v \ \neg C(u) \lor \neg B(u,v)) \quad \text{Quantor vorziehen}$$

$$\equiv \forall x \exists y \forall u \forall v \ (\neg A(x) \lor B(x,y)) \land (\neg C(u) \lor \neg B(u,v)) \quad \text{Quantor vorziehen}$$

zu Aufgabe 9 Prädikatenlogik - Modellierung (12 Punkte)

	F	$I \models_{\Sigma} F$	$I \not\models_{\Sigma} F$
(1)	$\forall x \ ((\neg \exists y \ links_neben(y, x)) \rightarrow (zwei(x) \lor sechs(x)))$	×	
(2)	$\exists x,y,z \ links_neben(y,x) \land links_neben(x,z) \land (karo(y) \land kreuz(z))$	×	
(3)	$\forall x \forall y \ \big((\mathit{kreuz}(x) \lor \mathit{pik}(x)) \land \neg \mathit{vier}(x) \land \mathit{neben}(x,y) \big) \to \mathit{herz}(y)$	1 18	×
(4)	$\forall x \; \big((kreuz(x) \vee pik(x)) \wedge \neg vier(x) \big) \to (\exists y \; neben(x,y) \wedge herz(y))$	×	
(5)	$\forall x \ pik(x) \rightarrow \left(acht(x) \lor (\exists y \ links_neben(y, x) \land herz(y)\right)$	×	
(6)	$\forall x \ sieben(x) \rightarrow \left(pik(x) \rightarrow (\neg \exists y \ links_neben(x,y))\right)$	×	

⁽³⁾ besagt, dass alle schwarzen Karten, die nicht den Wert 4 haben, nur Herzkarten als Nachbarn haben. Das stimmt offensichtlich nicht, beispielsweise liegt in der dritten Reihe eine Karokarte neben der Kreuz-2.

zu Aufgabe 10

Prädikatenlogik

(12 Punkte)

 $E:= \ \{F \in \mathcal{F} \mid F \text{ erfüllbar}\}$

 $W := \ \{F \in \mathcal{F} \mid F \text{ falsifizierbar}\}$

 $A := \{ F \in \mathcal{F} \mid F \text{ allgemeingültig} \}$

zu Teil 1 (7 Pkt.):

	richtig	falsch
$E \subseteq A$		×
$A \subseteq E$	×	
$W\subseteq \overline{A}$	×	
$E \cap W = \emptyset$		×
$\{\neg F \mid F \in A\} \subseteq W$	×	
$E \cup W = \mathcal{F}$	×	
$(E \cup W) \cap \overline{A} = \emptyset$		×

zu Teil 2 (5 Pkt.):

	4AM	E	\overline{E}	W	\overline{W}	A	\overline{A}
(1)	⊭¬F	F		i i uin		I I	
(2)	$F \models \neg F$		F	F			F
(3)	$F \models G \text{ und } F \models \neg G$		F	F			F
(4)	$F \models G \text{ und } F \not\models \neg G$	F,G	n- n		2 11:01	A . D.	
(5)	$\models F \text{ und } \models \neg F \lor G$	F,G		I E	F,G	F,G	

Erläuterungen:

Zu (1) Gilt $\not\models \neg F$, dann muss F erfüllbar sein, denn wäre F unerfüllbar, dann wäre $\neg F$ allgemeingültig (also $\not\models \neg F$). Ob F auch falsifizierbar ist, lässt sich aus $\not\models \neg F$ nicht ableiten.

Zu (2): $F \models \neg F$ ist gleichbedeutend mit der Allgemeingültigkeit der Formel $F \to \neg F$, welche äquivalent ist zu $\neg F$. Ist $\neg F$ allgemeingültig, dann ist F unerfüllbar.

Auch aus (3) kann durch Umformungen auf die Allgemeingültigkeit von $\neg F$ geschlossen werden: $(F \to G) \land (F \to \neg G) \equiv (\neg F \lor \neg G) \land (\neg F \lor \neg G) \equiv \neg F \lor (\neg F \land \neg G) \lor (\neg F \land G) \equiv \neg F$.

Ist wie in (4) zwar G, aber nicht $\neg G$ aus F ableitbar, dann muss F erfüllbar sein, anderenfalls könnte man aus F ("ex falso quod libet") auf jede Formel schließen. Ob F allgemeingültig ist oder nicht kann nicht geschlossen werden. Auch G muss erfüllbar sein, denn jedes Modell von F ist auch Modell von G, und da F, wie bereits gezeigt, mindestens ein Modell besitzt, besitzt auch G ein Modell.

Zu (5): Ist F allgemeingültig und impliziert G, dann ist auch G allgemeingültig.