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Abstract

We consider a generalization of the Gauss-Hermite filter (GHF),
where the filter density is represented by a Hermite expansion with
leading Gaussian term. Thus the usual GHF is included as a special
case. The moment equations for the time update are solved stepwise
by Gauss-Hermite integration, and the measurement update is com-
puted by the Bayes formula, again using numerical integration.

Key Words: Stochastic differential equations; Nonlinear systems;
Discrete measurements; Continuous-discrete state space model; Gaus-
sian filter; Hermite expansion.

1 Introduction

The Gaussian filter (GF) assumes, that the true filter density may be approxi-
mated by a Gaussian distribution parameterized by the conditional mean and
variance. Expectation values occuring in the time and measurement updates
can be computed numerically by using Gauss-Hermite quadrature (GHF; cf.
Ito and Xiong, 2000). Alternatively, such expectations are treated by trun-
cated Taylor expansion, leading to the well known extended Kalman filter
(EKF) or the second order nonlinear filter (SNF). It can be shown that the
Gaussian filter is equivalent to an infinite Taylor expansion and subsequent
Gaussian factorization of moments higher than two. Another method of
numerically computing expectations is the unscented Kalman filter (UKF)
of Julier and Uhlmann (1997, 2000, 2004). Again only two moments are
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required and the measurement update rests on the optimal linear estimate
(normal correlation).
In this paper higher order moments are explicitly computed and inserted
into the Hermite expansion of the filter density. Since the leading term
is Gaussian, Gauss-Hermite integration can again be used for the update
steps. Thus the method yields closed moment equations. It is demonstrated
that the algorithm can sucessfully model the nongaussian bimodal density
of a Ginzburg-Landau system and leads to smaller filtering error than the
Gaussian filter.

2 State Space Model and Filter Equations

2.1 Nonlinear Continuous-Discrete State Space Model

The nonlinear continuous-discrete state space model is defined as (Jazwinski,
1970)

dy(t) = f(y(t), t, ψ)dt+ g(y(t), t, ψ)dW (t) (1)

where discrete measurements zi are taken at times {t0, t1, . . . , tT} and t0 ≤
t ≤ tT according to the measurement equation

zi = h(y(ti), ti, ψ) + εi. (2)

In state equation (1), W (t) denotes an r-dimensional Wiener process and
the state is described by the p-dimensional state vector y(t). It fulfils a sys-
tem of stochastic differential equations in the sense of Itô (cf. Arnold, 1974)
with fixed initial condition y(t0). The functions f : R

p × R × R
u → R

p and
g : R

p×R×R
u → R

p×R
r are called drift and diffusion coefficients, respectively.

In measurement equation (2), εi ∼ N(0, R(ti, ψ))i.d. is a k-dimensional dis-
crete time white noise process (measurement error). Parametric estimation
is based on the u-dimensional parameter vector ψ. For notational simplicity,
deterministic control variables x(t) are absorbed in the time argument t.

2.2 Exact Continuous-Discrete Filter

The exact time and measurement updates of the continuous-discrete filter are
given by the recursive scheme (Jazwinski, 1970) for the conditional density
p(y, t|Z i):
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Time update:

∂p(y, t|Z i)

∂t
= F (y, t)p(y, t|Z i) ; t ∈ [ti, ti+1] (3)

p(y, ti|Z i) := pi|i

Measurement update:

p(yi+1|Z i+1) =
p(zi+1|yi+1, Z

i)p(yi+1|Z i)

p(zi+1|Z i)
(4)

:= pi+1|i+1

p(zi+1|Z i) =
∫
p(zi+1|yi+1, Z

i)p(yi+1|Z i)dyi+1, (5)

i = 0, . . . , T − 1, where

Fp = −∑
i

∂

∂yi
[fi(y, t, ψ)p(y, t|x, s)]

+1
2

∑
ij

∂2

∂yi∂yj
[Ωij(y, t, ψ)p(y, t|x, s)] (6)

is the Fokker-Planck operator, Ω = gg′, Z i = {z(t)|t ≤ ti} are the observa-
tions up to time ti and p(zi+1|Z i) is the likelihood function of observation
zi+1. The first equation describes the time evolution of the conditional den-
sity p(y, t|Z i) given information up to the last measurement and the mea-
surement update is a discontinuous change due to new information using
the Bayes formula. The above scheme is exact, but can be solved explicitly
only for the linear case where the filter density is Gaussian with conditional
moments

µ(t|ti) = E[y(t)|Z i] (7)

Σ(t|ti) = Var[y(t)|Z i]. (8)

2.3 Exact Moment Equations

In the Gauss-Hermite filter, instead of solving the time update for the condi-
tional density, the moment equations for the first and second moments are
solved approximately. Using the Euler approximation for the SDE (1), one
obtains in a short time interval δt (δW (t) := W (t+ δt) −W (t))

y(t+ δt) = y(t) + f(y(t), t)δt+ g(y(t), t)δW (t). (9)

Taking the expectation E[...|Z i] one gets the moment equation

µ(t+ δt|ti) = µ(t|ti) + E[f(y(t), t)|Z i]δt (10)
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or in the limit δt→ 0

µ̇(t|ti) = E[f(y(t), t)|Z i]. (11)

The higher order central moments

mk(t|ti) := E[(y(t) − µ(t|ti))k|Z i] := E[Mk(t|ti)|Z i] (12)

fulfil (scalar notation, dropping the condition)

mk(t+ δt) = E[y(t) + f(y(t), t)δt− µ(t+ δt) + g(y(t), t)δW (t)]k

:= E[a+ bc]k (13)

Using the binomial formula we obtain, utilizing the independence of y(t) and
δW (t)

E[a + bc]k =
k∑

j=0

(
k

j

)
E[ak−jbj ] ∗ E[cj ] (14)

E[cj ] =
{

(j − 1)!!δtj/2; j is even
0; j is odd

(15)

since odd powers of E[δW (t)]j vanish and E[δW (t)2j] = (2j − 1)!!δtj. For
example, the second moment (variance) m2 = σ2 fulfils

E[a + bc]2 = E[a2] + E[b2]δt (16)

= E[y(t) + f(y(t), t)δt− µ(t+ δt)]2 +

+ E[Ω(y(t), t)]δt, (17)

Ω = g2. Inserting the first moment (10) and setting a := α + β = (y −
E(y)) + (f − E(f))δt one obtains

m2(t+ δt) = m2(t) + 2E[(y − E(y))(f −E(f))]δt

+ E[f − E(f)]2δt2 + E[Ω]δt (18)

In general, up to O(δt) we have (Mk := (y − µ)k)

mk(t+ δt) = E[ak] + k(k−1)
2

E[bk−2]δt+O(δt2)

= mk(t) + kE[(y − E(y))k−1(f − E(f))]δt

+ k(k−1)
2

E[(y − E(y))k−2Ω]δt+O(δt2)

= mk(t) + kE[f(y, t) ∗ (Mk−1(t) −mk−1(t))]δt

+ k(k−1)
2

E[Mk−2(t)Ω(y, t)]δt+O(δt2). (19)
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The exact moment equations (11, 19) are not differential equations, since
they depend on the unknown conditional density p(y, t|Z i). For the Gaus-
sian filter, K = 2 moments are used, and the density is approximated by
p(x) = φ(x;µ, σ2). For the generalized Gaussian filter, K > 2 moments with
a density p(x) = φ(x;µ, σ2)

∑K
k=0 ckHk((x − µ)/σ) (Hermite expansion) is

utilized. In both cases, the integrals can be computed by Gauss-Hermite
integration.

3 Gauss-Hermite integration

The moment equations of the last section require the computation of expec-
tations of the type E[f(X)], where X is random variable with distribution
p(x). If p(x) is known, the expectation can be computed using (numerical)
integration. For the Gaussian filter, one may assume that the true p(x) is
approximated by a Gaussian distribution φ(x;µ, σ2) with the same mean µ
and variance σ2. Then, the Gaussian integral

Eφ[f(X)] =
∫
f(x)φ(x;µ, σ2)dx =

∫
f(µ+ σz)φ(x; 0, 1)dz (20)

≈
m∑

l=1

f(µ+ σζl)wl =
m∑

l=1

f(ξl)wl (21)

may be approximated by Gauss-Hermite quadrature (cf. Ito and Xiong,
2000). If such an approximation is used, one obtains the Gauss-Hermite
filter (GHF). Generally, filters using Gaussian densities are called Gaussian
filters (GF). The GHF can be interpreted in terms of the singular density
pGH(x) =

∑m
l=1wlδ(x − ξl) concentrated at the quadrature points ξl. The

Gaussian filter is equivalent to a Taylor expansion of f to higher orders L

E[f(X)] ≈
L∑

l=0

1
l!
f l(µ)E[X − µ]l =

L∑
l=0

1
l!
f l(µ)ml (22)

(higher order nonlinear filter HNF(2, L)) and factorization of the moments
according to the Gaussian assumption ml := E[X − µ]l = (l − 1)!!σl (l
even) and ml = 0 (l odd). This leads to an exact computation of (20) for
L → ∞. In this limit, the HNF and GF coincide. In the EKF=HNF(2,1)
and SNF=HNF(2,2), the higher order corrections are neglected. Also, third
and higher order moments could be used (HNF(K,L); cf. Singer, 2006[14]).
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4 Gauss-Hermite filtering

4.1 Continuous-discrete filtering scheme

The GHF is a recursive sequence of time and measurement updates for the
conditional moments µ and Σ, where expectation values are computed ac-
cording to (20) using Gauss-Hermite quadrature:

Initial condition: t = t0

µ(t0|t0) = µ+ Cov(y0, h0) ×
× (Var(h0) +R(t0))

−(z0 − E[h0])

Σ(t0|t0) = Σ − Cov(y0, h0) ×
× (Var(h0) +R(t0))

−Cov(h0, y0)

L0 = φ(z0;E[h0],Var(h0) +R(t0))

quadrature points : ηl = ηl(µ,Σ);µ = E[y0], Σ = Var(y0).

i = 0, . . . , T − 1:
Time update: t ∈ [ti, ti+1]

τj = ti + jδt; j = 0, ..., Ji − 1 = (ti+1 − ti)/δt− 1

µ(τj+1|ti) = µ(τj |ti) + E[f(y(τj), τj)|Z i]δt

Σ(τj+1|ti) = Σ(τj |ti) +

+ {Cov[f(y(τj), τj), y(τj)|Z i] +

+ Cov[y(τj), f(y(τj), τj)|Z i] +

+ E[Ω(y(τj), τj)|Z i]}δt
quadrature points : ηl = ηl(µ(τj|ti), Σ(τj |ti))

Measurement update: t = ti+1

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−(zi+1 −E[hi+1|Z i])

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−Cov(hi+1, yi+1|Z i)

Li+1 = φ(zi+1;E[hi+1|Z i],Var(hi+1|Z i) +R(ti+1))

quadrature points : ηl = ηl(µ(ti+1|ti), Σ(ti+1|ti)).

4.2 Discussion

1. The discretization interval δt is a small value controlling the accuracy
of the Euler scheme implicit in the time update. Since the quadrature
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points are functions of the mean and variance, the moment equations
(10,18) are a coupled system of nonlinear differential equations for the
sample points of the Gauss-Hermite scheme. Therefore, other approxi-
mation methods such as the Heun scheme or higher order Runge-Kutta
schemes could be used.

2. The time update is a multivariate version of eqn. (18) and neglects
second order terms. Inclusion of E[f − E(f)][f − E(f)]′δt2 leads to a
positive semidefinite update, which is numerically more stable.

3. The measurement update is the optimal linear update (normal corre-
lation; Liptser and Shiryayev, 1978, ch. 13, theorem 13.1, lemma 14.1)

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, zi+1|Z i)Var(zi+1|Z i)− ×
× (zi+1 − E[zi+1|Z i]) (23)

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, zi+1|Z i)Var(zi+1|Z i)− ×
× Cov(zi+1, yi+1|Z i). (24)

with measurement equation (2) inserted and covariances computed by
Gauss-Hermite integration. A direct implementation of the Bayes for-
mula (4) would lead to the asymmetric a posteriori density

p(yi+1|Z i+1) =
m∑

l=1

w∗
l δ(yi+1 − ηl) (25)

w∗
l = wlp(zi+1|ηl)/

m∑
l=1

wlp(zi+1|ηl) (26)

where the a priori density is p(yi+1|Z i) =
∑m

l=1wlδ(yi+1 − ηl) with
Gauss-Hermite sample points ηl = ηl(µ(ti+1|ti), Σ(ti+1|ti)). Computing
the a posteriori moments

µ(ti+1|ti+1) =
∫
yi+1p(yi+1|Z i+1)dyi+1 =

m∑
l=1

w∗
l ηl (27)

Σ(ti+1|ti+1) =
∫

(yi+1 − µ(ti+1|ti+1)

× (yi+1 − µ(ti+1|ti+1)
′p(yi+1|Z i+1)dyi+1 (28)

=
m∑

l=1

w∗
l [ηl − µ(ti+1|ti+1)][ηl − µ(ti+1|ti+1)]

′ (29)

one can construct a symmetric a posteriori distribution with the same
first and second moments (cf. sect. 5.2.1).
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4. Taylor expansion of f , Ω and h around µ leads to the usual EKF and
SNF. Using sigma points instead of Gaussian quadrature points yields
the unscented Kalman filter UKF (cf. Julier and Uhlmann, 1997, 200,
2004, Singer, 2006[13]).

5 Generalized Gauss-Hermite filtering

5.1 Hermite Expansion

If the filter density strongly deviates from normality, a Fourier expansion in
terms of Hermite polynomials may be utilized. The filter density p(y) can
be expanded into a Fourier series (cf. Courant and Hilbert, 1968, ch. II,
9, Abramowitz and Stegun, 1965, ch. 22, Aı̈t-Sahalia, 2002) by using the
complete set of Hermite polynomials which are orthogonal with respect to
the weight function w(x) = φ(x) = (2π)−1/2 exp(−x2/2) (standard Gaussian
density), i.e.∫ ∞

−∞
Hn(x)Hm(x)w(x)dx = n!δnm (30)

The Hermite polynomials Hn(x) are defined by

φ(n)(x) := (d/dx)nφ(x) = (−1)nφ(x)Hn(x). (31)

and are given explicitly by H0 = 1, H1 = x,H2 = x2 − 1, H3 = x3 − 3x,H4 =
x4 − 6x2 + 3 etc. Therefore, the density function p(x) can be expanded as 1

p(x) = φ(x)
∞∑

n=0

cnHn(x). (32)

and the Fourier coefficients are given by

cn := (1/n!)
∫ ∞

−∞
Hn(x)p(x)dx = (1/n!)E[Hn(X)] (33)

where X is a random variable with density p(x). The Hermite polynomials
contain powers of x, so the expansion coefficients can be expressed in terms
of moments µk = E[Xk]. Since the expansion has a leading standard Gaus-
sian density, it is more efficient to expand a standardized variable first and
afterwards transform to the unstandardized density.

1Actually, the expansion is in terms of the orthogonal system ψn(x) = φ(x)1/2Hn(x)
(oscillator eigenfunctions), i.e. q(x) := p(x)/φ(x)1/2 =

∑∞
n=0 cnψn(x), so the expansion

of q = p/φ1/2 must converge. The function to be expanded must be square integrable in
the interval (−∞,+∞), i.e.

∫
q(x)2dx =

∫
exp(x2/2)p2(x)dx < ∞ (Courant and Hilbert,

1968, p. 81–82).
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Using the standardized variables Z = (X − µ)/σ with µ = E[X], σ2 =
E[X2] − µ2, E[Z] = 0, E[Z2] = 1, E[Zk] := νk one obtains the simplified
expressions c0 = 1, c1 = 0, c2 = 0,

c3 := (1/3!)E[Z3] = (1/3!)ν3 (34)

c4 := (1/4!)E[Z4 − 6Z2 + 3] = (1/24)(ν4 − 3) (35)

and the standardized density expansion

pz(z) := φ(z)[1 + (1/6)ν3H3(z) + (1/24)(ν4 − 3)H4(z) + ...] (36)

which shows that the leading Gaussian term is corrected by higher order con-
tributions containing skewness and kurtosis excess. For a standard Gaussian
random variable, pz(z) = φ(z), so the coefficients ck, k ≥ 3 all vanish. For
example, the kurtosis of Z is E[Z4] = 3, so c4 = 0.
Using the expansion for the standardized variable and the change of variables
formula px(x) = (1/σ)pz(z); z = (x − µ)/σ one obtains the desired Hermite
expansion for px(x)

px(x) = φ(x;µ, σ2)
∞∑

n=0

cnHn((x− µ)/σ) (37)

= φ(x;µ, σ2)H(x) (38)

The standardized moments νk = E[Zk] = E[(X − µ)k]/σk := mk/σ
k neces-

sary for ck can be expressed in terms of centered moments

mk := E[Mk] := E[(X − µ)k]. (39)

5.2 Generalized Gauss-Hermite filtering

Extending the Gaussian filter, the densities are represented by the truncated
Fourier series

p(y) = φ(y;µ, σ2)
K∑

n=0

cnHn((y − µ)/σ) = φ ∗H, (40)

and expectation values occuring in the update equations are computed by
Gauss-Hermite integration, including the nongaussian term

H(y; {µ,m2, ..., mK}) =
K∑

n=0

cnHn((y − µ)/σ) := H(y,K). (41)

For example, the mean equation (11) is

µ̇(t|ti) = E[f(y(t), t)|Z i] =
∫
f(y, t)p(y, t)dy (42)

≈ ∑
wlf(ηl, t) ∗H(ηl, K). (43)
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In lowest order K = 2, H(y; {µ,m2}) = 1, so the usual GHF is a special
case. The time update of the kth moment

mk(t+ δt|ti) = mk(t|ti) + kE[f(y, t) ∗ (Mk−1(t|ti) −mk−1(t|ti))]δt
+ k(k−1)

2
E[Mk−2(t|ti)Ω(y, t)]δt+O(δt2) (44)

can be computed analogously. Since the density expansion is given by K
moments, one obtains a closed system of moment equations. In contrast, a
Taylor expansion of the functions f and Ω occuring in the moment equations
does produce higher order moments which must be truncated or otherwise
approximated (e.g. Gaussian factorization; cf. Singer, 2006[14]).

5.2.1 Exact measurement update

The exact measurement update is given by the Bayes formula

p(yi+1|Z i+1) = p(zi+1|yi+1)p(yi+1|Z i)/Li+1 (45)

Li+1 =
∫
p(zi+1|yi+1)p(yi+1|Z i)dyi+1 (46)

p(yi+1|Z i) = φ(yi+1;µ(ti+1|ti), Σ(ti+1|ti)) ∗H(yi+1) (47)

and using Gauss-Hermite integration the likelihood is

Li+1 =
m∑

l=1

wlp(zi+1|ηl)H(ηl) (48)

ηl = ηl(µ(ti+1|ti), Σ(ti+1|ti)). (49)

By the same token, the a posteriori moments are given as

µ(ti+1|ti+1) = L−1
i+1

m∑
l=1

wlp(zi+1|ηl)H(ηl)ηl (50)

mk(ti+1|ti+1) = L−1
i+1

m∑
l=1

wlp(zi+1|ηl)H(ηl)[ηl − µ(ti+1|ti+1)]
k, (51)

k = 2, ..., K. From these updated moments, a new Hermite representation of
the filter density with leading a posteriori Gaussian

p(yi+1|Z i+1) = φ(yi+1;µ(ti+1|ti+1), m2(ti+1|ti+1))

× H(yi+1; {µ(ti+1|ti+1), .., mK(ti+1|ti+1)}) (52)

can be computed and inserted into the time update equations.
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5.2.2 Approximate measurement update

The Bayes formula (45)

p(yi+1|Z i+1) ∝ φ(zi+1; h(yi+1), Ri+1) ×
× φ(yi+1;µ(ti+1|ti), Σ(ti+1|ti))H(yi+1). (53)

can be approximated by using the normal correlation (23) as follows: The
product of the two Gaussians is written approximately as (the formula is
exact for linear measurements)

L0,i+1 ∗ φ(yi+1;µ0(ti+1|ti+1), Σ0(ti+1|ti+1)), (54)

where (setting h(yi+1) := hi+1 etc.)

µ0(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−(zi+1 − E[hi+1|Z i]) (55)

Σ0(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−Cov(hi+1, yi+1|Z i) (56)

L0,i+1 = φ(zi+1;E[hi+1|Z i],Var(hi+1|Z i) +R(ti+1)) (57)

is the normal correlation update and the approximate likelihood of the Gaus-
sian part. Therefore the complete update is the product of the Gaussian a
posteriori density and the a priori Hermite part

p(yi+1|Z i+1) = φ(yi+1;µ0(ti+1|ti+1), Σ0(ti+1|ti+1)) ×
× H(yi+1; {µ(ti+1|ti), .., mK(ti+1|ti)})/L1,i+1 (58)

L1,i+1 =
∫
φ(yi+1;µ0(ti+1|ti+1), Σ0(ti+1|ti+1)) ×

× H(yi+1; {µ(ti+1|ti), .., mK(ti+1|ti)})dyi+1 (59)

and the complete likelihood is L = L0 ∗ L1. If the Hermite correction is
H = 1, we have L1 = 1 and L = L0 coincides with the Gaussian part. Again,
all integrals involving p = φ ∗ H can be computed using Gauss-Hermite
integration, e.g. the a posteriori moments. They are simpler to compute than
(50), since they involve only polynomials and not the exponential p(z|y). In
the case of linear measurements, (58) is exact.
The approximate update can be used to improve the numerical proper-
ties of the Bayes update (45). One replaces the integration with respect
to φ(yi+1;µ(ti+1|ti), Σ(ti+1|ti)) by integration over the linear posteriori den-
sity φ(yi+1;µ0(ti+1|ti+1), Σ0(ti+1|ti+1)), analogously to importance sampling.
This is more efficient if the measurements are nonlinear and far from the
mean of the a priori density, since more Gauss-Hermite sample points are in
regions of large φ(zi+1; h(yi+1), Ri+1).
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6 Example: Ginzburg-Landau Model

The algorithm was tested using a nonlinear system which strongly deviates
from Gaussian behavior (cf. Miller et al., 1994, Singer, 2002). The Ginzburg-
Landau model is a diffusion process in a double well potential Φ(y, {α, β}) =
α
2
y2 + β

4
y4 with vector field f = −∂Φ/∂y and state independent diffusion

coefficient g = σ. The SDE reads explicitly (Ginzburg-Landau equation)

dy = −[αy + βy3]dt+ σdW (t) (60)

with measurement equation

zi = yi + εi, (61)

Var(εi) = R. A physical picture is the strongly damped random move-
ment of a sphere in a landscape defined by the potential Φ. The potential
Φ can exhibit a Hopf bifurcation when α becomes negative (β > 0). In
the double wells, the transition density is Gaussian for short times, but
for long time intervals a bimodal shape tending to the stationary density
p0(y) = limt→∞ p(t, y|x, s) ∝ exp(− 2

σ2Φ(y)) occurs. The parameters are cho-
sen as ψ = {α, β, σ, R} = {−1, 0.1, 2, 1}. Figs. (1– 3) show the evolution of
the filter density from a Gaussian initial condition to time t = 20 (time steps
δt = 0.1). Using more terms in the Hermite expansion, the algorithm can
model the bimodal shape of the density. Fig. (4) displays the comparision of
the true stationary density with the Hermite expansion (K = 10) produced
by the moment equations at t = 20 and Hermite expansions (K = 10, 20, 30)
computed from the true p0. It is seen that higher expansion orders than 10
are necessary for a good approximation. The sequence of measurement up-
dates are displayed in figs. (5–6). The GHF always uses Gaussian densities,
whereas the GGHF (K = 10) can model the more realistic bimodal shape.
Since the a priori distribution has probability mass in both potential wells,
the a posteriori density is more sharply peaked and located nearer to the
measurements (e.g. second row, t = 4, 10th row, t = 15, etc.). The measure-
ments are linear, so the normal correlation update (58) was used, which is
exact here.
The performance of the filters was tested in a simulation study comparing
true and filtered trajectory (table 1). In M = 100 replications the following
quantities were computed:

• filter error: νt = y(t) − ŷ(t)

• squared filter error: A =
∑

t ν
2
t

• error mean : B = 1/T
∑

t νt
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Figure 1: Time evolution of filter density p(y, t) (K = 2=GHF).
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Figure 2: Time evolution using K = 4 moments.
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Figure 3: Time evolution using K = 10 moments.
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Figure 4: Comparision of the exact stationary density p0 (red), the Hermite
expansion produced by the moment equations (yellow; K = 10) and computed
from p0 (green: K = 10; blue: K = 20, purple: K = 30). The density
approximation may become negative locally.

• error standard deviation: C = [1/T
∑

t(νt − B)2]0.5

• mean and standard deviation of A,B,C in M samples:
X̄ = 1/M

∑
m Xm; std(X) = [1/M

∑
m(Xm − X̄)2]0.5; X ∈ {A,B,C}

The table compares the extended Kalman filter (EKF), the unscented Kalman
filter (UKF) with the Gauss-Hermite filter (GHF) and the generalized Gauss-
Hermite filter (GGHF) for several expansion orders K = 2, 4, ..., 14. For
K = 2, GHF(m = 4) and GGHF(m = 4, K = 2) coincide. The GHF(m = 3)
is equivalent to the UKF(κ = 2) (cf. Ito and Xiong, 2000). Since the drift
f is of O(y3) and terms up to O(f 2) are considered in the time update,
one must use 2m − 1 ≥ 6 or m ≥ 4 in the Gauss-Hermite sum. For the
GGHF(K > 2), also the Hermite correction H(y;K) ∼ O(yK) must be con-
sidered in the choice of integration order m. If the drift is O(yL), the highest
order term is E[y + fδt]K leading to terms O(yLKyK) = O(y(L+1)K). Thus,
the integration order must be 2m− 1 ≥ (L+1)K or m ≥ 1/2[(L+ 1)K +1].
Setting L = 3, f ∼ O(yL), we find the table with minimal integration order

[
K 2 4 6 8 10 12 14
m 4 9 13 17 21 25 29

]
. (62)

These integration orders were used for the GGHF. The performance of the
GGHF in terms of squared filter error improves with the degree of the density
approximation (order K of Hermite series H(y,K)) and is better than the
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GGHF, K=2
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Figure 5: A priori (red) and a posteriori densities (yellow). K = 2. The
measurements are plotted by a vertical line.
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GGHF, K=10
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Figure 6: A priori (red) and a posteriori densities (yellow). K = 10. The
measurements are plotted by a vertical line.
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usual GHF (K = 2) as well as the UKF. The EKF is outperformed by all
algorithms.

numerical remarks Since the Hermite expansion may become locally neg-
ative (cf. fig. 4), the Hermite part H(y,K) (41) was replaced by H+ :=
Hθ(H) + ε, where θ(H) is the Heaviside unit step function. This is im-
portant, if the measurement update takes part in regions with negative or
oscillating a priori densities. The addition of a small number ε = 10−1 causes
a smoothing of oscillating a posteriori densities. The truncation of the poly-
nomial H(y,K) may require higher integration order m, however. In order
to improve the performance of the Gauss-Hermite quadrature, only sample
points with weights above a certain threshold (10−4) were used. Alterna-
tively, one can exclude points outside a range of k standard deviations, i.e.
|ζl| > k. Usually, k = 3 or 4 is sufficient.

7 Conclusion

The generalized Gauss-Hermite filter (GGHF) is a natural extension of the
usual Gauss filter with leading Gaussian and higher order corrections in a
Hermite expansion of the filter density. All expectation values occuring in the
time and measurement updates can be computed by Gauss-Hermite quadra-
ture and the moment equations are closed. The Bayes update allows the
treatment of strongly nonlinear measurements such as threshold models (or-
dinal data). In a model system, the nongaussian bimodal filter density could
be well approximated by higher order expansions leading to a better filter
performance. Further work will implement the algorithm for multivariate
Hermite expansions and moment equations.
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Table 1: Distribution of filter error in M = 100 samples. Ā, std(A): mean
and standard deviation of squared filter error; B̄, std(B): mean and standard
deviation of averaged filter error (bias); C̄, std(C): mean and standard deviation
of filter error standard deviation (see text).

Ā std(A) B̄ std(B) C̄ std(C)

EKF

30.4303 9.29225 -0.0172362 0.851867 1.98594 0.605503

UKF

κ = 0 24.3465 3.62642 0.0228194 0.643741 1.58941 0.270704

κ = 1 24.3543 4.01249 0.0197056 0.632016 1.59548 0.292646

κ = 2 24.4874 4.56068 0.0168696 0.629528 1.60828 0.321831

κ = 3 24.7165 5.12368 0.0144765 0.635766 1.62544 0.351386

GHF

m = 3 24.4874 4.56068 0.0168696 0.629528 1.60828 0.321831

m = 4 24.4653 4.49457 0.0171205 0.628488 1.60677 0.318386

GGHF

K = 2 24.4653 4.49457 0.0171205 0.628488 1.60677 0.318386

K = 4 24.2210 4.25883 0.0155556 0.607959 1.5966 0.299874

K = 6 24.1879 4.32234 0.0174935 0.595958 1.59868 0.30402

K = 8 24.1949 4.45003 0.0190297 0.593306 1.60069 0.310411

K = 10 24.2486 4.65799 0.0193939 0.592476 1.60574 0.321725

K = 12 24.2309 4.64232 0.0199682 0.590062 1.60533 0.320391

K = 14 24.1987 4.46655 0.020575 0.585903 1.6038 0.310969
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