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Abstract

The generalized Gauss-Hermite-filter (GGHF) is implemented in
the multivariate case. We utilize a Hermite expansion of the filter den-
sity and Gauss-Hermite integration for the computation of expectation
values in the time and measurement update (moment equations and
Bayes formula). The algorithm is successfully applied to the Bayesian
estimation of a volatility parameter, where filters based on two mo-
ments (EKF, UKF, GHF) fail. Moreover, the stochastic volatility
model of Scott (1987) is treated.

Key Words: Multivariate stochastic differential equations; Nonlinear
systems; Discrete time measurements; Continuous-discrete state space
model; Gaussian filter; Hermite expansion; Stochastic volatility.

1 Introduction

In a recent article the Gaussian filter was generalized by using a scalar
Hermite expansion of the filter density with leading Gaussian term (Singer
2006a). Thus, integrals appearing in the time and measurement update can
be computed by Gauss-Hermite integration, as in the Gaussian filter (cf. Ito
and Xiong, 2000). The restrictive assumption of a Gaussian filter density is
dropped and arbitrary functional forms can be modeled by inclusion of 3rd
and higher order moments (skewness, kurtosis etc.). The Gaussian filter is
contained as a special case. In this paper, the general multivariate case is
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derived. Similar algorithms have been developed by Challa et al. (2000),
but we formulate the time update as integro-differential equations solved
stepwise by using Gauss-Hermite integration. Moreover, computation of the
measurement update (Bayes formula) is improved. We use the normal corre-
lation update as Gaussian weight function in the Gauss-Hermite quadrature
to achieve higher numerical accuracy. Finally it is shown how the volatility
parameter of an Ornstein-Uhlenbeck process can be estimated sequentially.
In this problem Gaussian filters fail since they cannot model the strong non-
gaussianity of the posterior density of the volatility. Similar considerations
apply to the stochastic volatility models of Scott (1987) or Hull and White
(1987).

2 State Space Model and Filter Equations

2.1 Nonlinear Continuous-Discrete State Space Model

The nonlinear continuous-discrete state space model is defined as (Jazwinski,
1970)

dy(t) = f(y(t), t, ψ)dt+ g(y(t), t, ψ)dW (t) (1)

where discrete measurements zi := z(ti) are taken at times {t0, t1, . . . , tT}
and t0 ≤ t ≤ tT according to the measurement equation

zi = h(y(ti), ti, ψ) + εi. (2)

In state equation (1), W (t) denotes an r-dimensional Wiener process and the
state is described by the p-dimensional state vector y(t). It fulfils a system
of stochastic differential equations in the sense of Itô (cf. Arnold, 1974) with
random initial condition y(t0) ∼ p0(y, ψ). The functions f : R

p×R×R
u → R

p

and g : R
p × R × R

u → R
p × R

r are called drift and diffusion coefficients,
respectively. In measurement equation (2), εi ∼ N(0, R(ti, ψ))i.d. is a k-
dimensional discrete time white noise process (measurement error). Para-
metric estimation is based on the u-dimensional parameter vector ψ. For
notational simplicity, deterministic control variables x(t) are absorbed in the
time argument t. Moreover, the functions f and g may also depend on
nonanticipative measurements Zt = {z(s)|s ≤ t} and h, R may depend on
lagged measurements Z i−1 := Zti−1 = {z(s)|s ≤ ti−1} allowing continuous
time ARCH specifications. In the linear case, the system is conditionally
gaussian (cf. Liptser and Shiryayev, 2001, ch. 11). This dependence will be
dropped in the sequel.
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2.2 Exact Continuous-Discrete Filter

The exact time and measurement updates of the continuous-discrete filter are
given by the recursive scheme (Jazwinski, 1970) for the conditional density
p(y, t|Z i):

Time update:

∂p(y, t|Z i)

∂t
= F (y, t)p(y, t|Z i) ; t ∈ [ti, ti+1] (3)

p(y, ti|Z i) := pi|i

Measurement update:

p(yi+1|Z i+1) =
p(zi+1|yi+1, Z

i)p(yi+1|Z i)

p(zi+1|Z i)
(4)

:= pi+1|i+1

p(zi+1|Z i) =
∫
p(zi+1|yi+1, Z

i)p(yi+1|Z i)dyi+1, (5)

i = 0, . . . , T − 1, where

F (·) = −∑
i

∂

∂yi
[fi(y, t, ψ)·] + 1

2

∑
ij

∂2

∂yi∂yj
[Ωij(y, t, ψ)·] (6)

is the Fokker-Planck operator, Ω = gg′, Z i = {z(t)|t ≤ ti} are the observa-
tions up to time ti and p(zi+1|Z i) is the likelihood function of observation
zi+1. The first equation describes the time evolution of the conditional den-
sity p(y, t|Z i) given information up to the last measurement and the mea-
surement update is a discontinuous change due to new information using the
Bayes formula. The above scheme is exact, but can be solved explicitly only
for the linear case where the filter density is Gaussian with conditional mo-
ments µ(t|ti) = E[y(t)|Z i];Σ(t|ti) = Var[y(t)|Z i] and for some special cases
(Daum filter; Daum, 1986).

2.3 Exact Moment Equations

In the generalized Gauss-Hermite filter, instead of solving the time update
equations (3) for the conditional density directly, the moment equations for
K moments are solved approximately. The moments can be used to com-
pute the expansion coefficients of the density function (sect. 4). Using the
Euler approximation for the SDE (1), one obtains in a short time interval δt
(δW (t) := W (t+ δt) −W (t))

y(t+ δt) = y(t) + f(y(t), t)δt+ g(y(t), t)δW (t). (7)
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Taking the expectation E[...|Z i] one gets the moment equation

µ(t+ δt|ti) = µ(t|ti) + E[f(y(t), t)|Z i]δt (8)

or in the limit δt→ 0

µ̇(t|ti) = E[f(y(t), t)|Z i]. (9)

The 2nd central moment m2 = Σ (dropping the condition Z i)

m2,jk(t) := E[(yj(t) − µj(t))(yk(t) − µk(t))] := E[M2,jk(t)], (10)

j, k = 1, ..., p fulfils

m2,jk(t+ δt) = E[(yj + fjδt− µj(t+ δt) + gjj′δWj′) ×
(yk + fkδt− µk(t+ δt) + gkk′δWk′)], (11)

where yj := yj(t), fj := fj(y(t), t) etc. and µj(t + δt) = E[yj + fjδt] :=
µj + E[fj]δt. Since the increments of the Wiener process are independent
of the terms at time t one obtains, introducing centered variables y∗j :=
yj −E(yj), f

∗
j := fj − E(fj),

m2,jk(t+ δt) = m2,jk(t) + E[y∗j f
∗
k + y∗kf

∗
j +Ωjk]δt+

+ E[f ∗
j f

∗
k ]δt2. (12)

In the limit δt→ 0 we have

ṁ2,jk(t) = E[y∗j f
∗
k ] + E[y∗kf

∗
j ] + E[Ωjk]. (13)

The exact moment equations (9, 13) are not differential equations, however,
since they depend on the unknown conditional density p(y, t|Z i). For the
Gaussian filter, K = 2 moments are used, and the density is approximated
by p(y) = φ(y;µ,Σ). For the generalized Gaussian filter, K > 2 moments
with a density

p(y) = φ(y;µ,Σ)
K∑

k=0

ckHk(Σ
−1/2(y − µ)) (14)

(Hermite expansion) are utilized (sect. 4). In both cases, the expectation val-
ues can be computed by Gauss-Hermite integration. An Euler approximation
of the moment equation (13) yields (12), but without quadratic terms O(δt2).
The update (12) is numerically more stable, since it is positive semidefinite.
Higher order moments, as required by the Hermite expansion (14), can be
computed as follows. The third moment (skewness) is given as, using the
abbreviations γj := gjj′δWj′, aj := y∗j + f ∗

j δt = yj −E(yj) + (fj − E(fj))δt

m3,jkl(t+ δt) = E[(aj + γj)(ak + γk)(al + γl)]. (15)
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Collecting the terms yields

m3,jkl(t+ δt) = E[ajakal] + E[ajγkγl] + E[γjakγl] + E[γjγkal] (16)

= E[ajakal] + (E[ajΩkl] + E[akΩjl] + E[alΩjk])δt,

since E[ajγkγl] = E[ajgkk′gll′]E[δWk′δWl′] and E[δWk′δWl′ ] = δk′l′δt with
the Kronecker delta symbol δjk = 1 if j = k and 0 elsewhere. Furthermore,
E[aiajγk] = E[aiajgkk′]E[δWk′ ] = 0, since the increments of the Wiener
process are independent of yj.
In the limit δt→ 0 only terms of order O(δt) survive yielding

ṁ3,jkl(t) = E[y∗j y
∗
kf

∗
l ] + E[y∗j f

∗
ky

∗
l ] + E[f ∗

j y
∗
ky

∗
l ] + (17)

+ E[y∗jΩkl] + E[y∗kΩjl] + E[y∗l Ωjk].

In the scalar case the general formula is

ṁk(t) = kE[(y∗)k−1f ∗] + k(k−1)
2

E[(y∗)k−2Ω], (18)

(Singer 2006b), e.g.

ṁ3(t) = 3E[(y∗)2f ∗] + 3E[y∗Ω], (19)

thus the multivariate formula can be obtained by combining all different
indices with the symbolic notation

ṁ3,jkl(t) = (3)E[y∗j y
∗
kf

∗
l ] + (3)E[y∗jΩkl] (20)

(cf. Stratonovich, 1992, p. 27). The number in parantheses is the number
of similar terms which differ only in the order of subscripts. The general
formula reads

ṁk,j1j2,...,jk
(t) = (k)E[y∗j1...y

∗
jk−1

f ∗
jk

] +

+
(

k(k−1)
2

)
E[y∗j1...y

∗
jk−2

Ωjk−1jk
] (21)

and

mk,j1j2,...,jk
(t+ δt) = E

[
k∏

l=1

(ajl
+ γjl

)

]

=
k∑

l=0

((
k

l

))
E[aj1 ...ajk−l

γjk−l+1
...γjk

]. (22)

For example, the term k = 3, l = 1 is
((

3
1

))
E[aj1aj2γj3] = E[aj1aj2γj3 +

aj1aj3γj2 + aj2aj3γj1] = 0. The expectations E[aj1 ...ajk−l
γjk−l+1

...γjk
] can

be simplified by using the independence of δWj from terms containing yk.
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Inserting the higher order Gaussian moments of δWj , all expectations can
be expressed in terms of aj(y) and Ωkl(y). For example, E[ajakγlγm] =
E[ajakΩlm]δt and

E[γjγkγlγm] = E[ΩjkΩlm +ΩjlΩkm +ΩjmΩkl]δt
2. (23)

The higher order Gaussian moments of δW may be computed using the
characteristic function χ(t) = E[exp(it′δW )] = exp(−1

2
t′tδt). Formula (21)

is obtained from (22) in the limit δt→ 0 keeping terms of order O(δt).

3 Gauss-Hermite integration

The moment equations of the last section require the computation of expec-
tations of the type E[f(Y )], where Y is a random variable with density p(y).
For the Gaussian filter, one may assume that the true p(y) is approximated
by a Gaussian distribution φ(y;µ, σ2) with the same mean µ and variance
σ2. Then, the Gaussian integral

Eφ[f(Y )] =
∫
f(y)φ(y;µ, σ2)dy =

∫
f(µ+ σz)φ(z; 0, 1)dz (24)

≈
m∑

l=1

f(µ+ σζl)wl =
m∑

l=1

f(ηl)wl (25)

may be approximated by Gauss-Hermite quadrature (cf. Ito and Xiong,
2000). Here, (ζl, wl) are quadrature points and weights, respectively. If such
an approximation is used, one obtains the Gauss-Hermite filter (GHF). Fil-
ters using Gaussian densities are called Gaussian filters (GF). More generally,
the density may be approximated by the Hermite series p(y) = φ(y;µ, σ2) ∗
H(z); z = (y − µ)/σ (14) which again yields integrals w.r.t. the Gaussian
density i.e. E[f(Y )] =

∫
f(y)H(y)φ(y)dy.

In the multivariate case, the integration is performed using standardization

Eφ[f(Y )] =
∫
f(y)φ(y;µ,Σ)dy (26)

=
∫
f(µ+Σ1/2z)φ(z; 0, I)dz1...dzp (27)

≈ ∑
l1,...,lp

f(µ+Σ1/2{ζl1, ..., ζlp})wl1,...,lp (28)

=
∑

l1,...,lp

f(ηl1, ..., ηlp)wl1,...,lp, (29)

since φ(z; 0, I) = φ(z1; 0, 1)...φ(zp; 0, 1) allows stepwise application of the
univariate quadrature formula and {ζl1 , ..., ζlp}, lj = 1, ..., m, is the p-tupel of
Gauss-Hermite quadrature points with weights wl1,...,lp = wl1...wlp .
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4 Hermite Expansion

4.1 Univariate Hermite Expansion

If the filter density strongly deviates from normality, a Fourier expansion
in terms of Hermite polynomials may be utilized (Edgeworth series; cf.
Kuznetsov et al., 1960, Courant and Hilbert, 1968, ch. II, 9, Abramowitz
and Stegun, 1965, ch. 22, Aı̈t-Sahalia, 2002). The filter density p(x) can be
expanded by using the complete set of Hermite polynomials which are orthog-
onal with respect to the weight function w(x) = φ(x) = (2π)−1/2 exp(−x2/2)
(standard Gaussian density), i.e.∫ ∞

−∞
Hn(x)Hm(x)w(x)dx = n!δnm (30)

The Hermite polynomials Hn(x) are defined by

φ(n)(x) := (d/dx)nφ(x) = (−1)nφ(x)Hn(x). (31)

and are given explicitly as H0 = 1, H1 = x,H2 = x2 − 1, H3 = x3 − 3x,H4 =
x4 − 6x2 + 3 etc. Therefore, the density function p(x) can be expanded as 1

p(x) = φ(x)
∞∑

n=0

cnHn(x). (32)

and the Fourier coefficients are given by

cn := (1/n!)
∫ ∞

−∞
Hn(x)p(x)dx = (1/n!)E[Hn(X)] (33)

where X is a random variable with density p(x). The cn are called quasi-
moments by Kuznetsov et al. (1960), since the characteristic function corre-
sponding to (32) is the product of a Gaussian and a power series expansion
with cn as expansion coefficients.
The Hermite polynomials contain powers of x, so the expansion coefficients
can be expressed in terms of moments µk = E[Xk]. Since the expansion
has a leading standard Gaussian density, it is more efficient to expand a
standardized variable first and afterwards transform to the unstandardized
density.

1Actually, the expansion is in terms of the orthogonal system ψn(x) = φ(x)1/2Hn(x)
(oscillator eigenfunctions), i.e. q(x) := p(x)/φ(x)1/2 =

∑∞
n=0 cnψn(x), so the expansion

of q = p/φ1/2 must converge. The function to be expanded must be square integrable in
the interval (−∞,+∞), i.e.

∫
q(x)2dx =

∫
exp(x2/2)p2(x)dx < ∞ (Courant and Hilbert,

1968, p. 81–82).
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Using the standardized variables Z = (X − µ)/σ with µ = E[X], σ2 =
E[X2] − µ2, E[Z] = 0, E[Z2] = 1, E[Zk] := νk one obtains the simplified
expressions c0 = 1, c1 = 0, c2 = 0,

c3 := (1/3!)E[Z3] = (1/3!)ν3 (34)

c4 := (1/4!)E[Z4 − 6Z2 + 3] = (1/24)(ν4 − 3) (35)

and the standardized density expansion

pz(z) := φ(z)[1 + (1/6)ν3H3(z) + (1/24)(ν4 − 3)H4(z) + ...] (36)

which shows that the leading Gaussian term is corrected by higher order con-
tributions containing skewness and kurtosis excess. For a standard Gaussian
random variable pz(z) = φ(z), so the coefficients ck, k ≥ 3 all vanish. For
example, the kurtosis of Z is E[Z4] = 3, so c4 = 0.
Using the expansion for the standardized variable and the change of variables
formula px(x) = (1/σ)pz(z); z = (x − µ)/σ one obtains the desired Hermite
expansion for px(x)

px(x) = φ(x;µ, σ2)
∞∑

n=0

cnHn((x− µ)/σ) (37)

:= φ(x;µ, σ2)H(x) (38)

The standardized moments νk = E[Zk] = E[(X − µ)k]/σk := mk/σ
k neces-

sary for ck can be expressed in terms of centered moments

mk := E[Mk] := E[(X − µ)k]. (39)

4.2 Multivariate Hermite Expansion

In the case of random vectors X ∈ R
p the multivariate (standardized) Her-

mite expansion

px(x) = φ(x;µ,Σ)
∞∑

|n|=0

cnHn(z) (40)

:= φ(x;µ,Σ)H(x), (41)

z = Σ−1/2(x − µ), with multiindex n = {n1, ..., np};∑nl = |n| can be used.
The Hermite functions Hn(x) are products Hn1(x1)...Hnp(xp) which are or-
thogonal w.r.t. the Gaussian φ(x; 0, I), i.e.∫ ∞

−∞
Hn(x)Hm(x)φ(x; 0, I)dx = n!δnm (42)
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or more explicitly∫ ∞

−∞
Hn1(x1)...Hnp(xp)Hm1(x1)...Hmp(xp)×

× φ(x1; 0, 1)...φ(xp; 0, 1)dx1...dxp = (n1!...np!)δn1m1 ...δnpmp . (43)

Thus the expansion coefficients are given by∫ ∞

−∞
px(x)Hm(z)dx =

∞∑
|n|=0

cn

∫ ∞

−∞
φ(x;µ,Σ)Hn(z)Hm(z)dx

=
∞∑

|n|=0

cn

∫ ∞

−∞
φ(z; 0, I)Hn(z)Hm(z)dz

= m!cm = (m1!...mp!)cm. (44)

Since the Hermite functions Hm1(z1)...Hmp(zp) contain powers of maximum
order |m|, the coefficients can be expressed by the standardized moments of
the same order, i.e.

ν
m1...mp

|m| =
∫ ∞

−∞
pz(z)z

m1
1 ...zmp

p dz. (45)

The moment is indexed by the order |m| = m1 + ... + mp and by the ex-
ponents ml of the several variables. The standardized moments can be
computed from the centered moments of section (2.3) by using the rela-
tion z = Σ−1/2(y − µ) := Γ (y − µ) with some matrix square root, e.g. the
Cholesky decomposition. One obtains

ν
m1...mp

|m| = E[zm1
1 ...zmp

p ]

= (Γ1i11 ...Γ1i1m1
)...(Γpip1 ...Γpipmp

)

× E[(y∗i11 ...y
∗
i1m1

)...(y∗ip1
...y∗ipmp

)] (46)

with the centered variables y∗j = yj − µj . One the right hand side, we have
the centered moments in index notation (lower subscript)

m|m|,(i11...i1m1 )...(ip1...ipmp) := E[(y∗i11 ...y
∗
i1m1

)...(y∗ip1
...y∗ipmp

)] (47)

4.2.1 Example: third moment (p = 2 variables)

ν21
3 = E[z2

1z
1
2 ]

= Γ1i11Γ1i12Γ2i21E[(y∗i11y
∗
i12

)y∗i21]

= Γ1i11Γ1i12Γ2i21m3,i11i12i21 . (48)

We use the Einstein sum convention (sum over double indices) and drop the
summation symbols

∑
.
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4.2.2 Example: quasi moment c3

In the case p = 2, the coefficient c3 with n1 +n2 = |n| = 3 contains the terms
{n1, n2} = {3, 0}, {2, 1}, {1, 2}, {0, 3}. Thus

3!0! c30 = E[H3(z1)] = E[z3
1 − 3z1] = E[z3

1 ] = ν30
3 (49)

2!1! c21 = E[H2(z1)H1(z2)] = E[(z2
1 − 1)z2] = E[z2

1z2] = ν21
3 (50)

1!2! c12 = E[H1(z1)H2(z2)] = E[z1(z
2
2 − 1)] = E[z1z

2
2 ] = ν12

3 (51)

0!3! c03 = E[H3(z2)] = E[z3
2 − 3z2] = E[z3

2 ] = ν03
3 . (52)

5 Generalized Gauss-Hermite filtering

5.1 Time update

Extending the Gaussian filter, the densities are represented by the truncated
Hermite series (40) and expectation values occuring in the update equations
are computed by Gauss-Hermite integration, including the nongaussian term

H(y; {µ,m2, ..., mK}) =
K∑

|n|=0

cnHn(z) := H(y,K), (53)

n = {n1, ..., np}. For example, the mean equation (9) is

µ̇(t|ti) = E[f(y(t), t)|Z i] =
∫
f(y, t)p(y, t)dy (54)

≈ ∑
wlf(ηl, t) ∗H(ηl, K), (55)

l = {l1, ..., lp}. In lowest order K = 2, H(y; {µ,m2}) = 1, so the usual GHF is
a special case. The time update of the kth momentmk,j1j2,...,jk

(t), k = 2, ..., K
(eqn. 22) can be computed analogously. Since the density expansion is
given by K moments, one obtains a closed system of moment equations. In
contrast, a Taylor expansion of the functions f and Ω occuring in the moment
equations does produce higher order moments which must be truncated or
approximated otherwise (e.g. Gaussian factorization; cf. (Singer 2006b)).

5.2 Measurement update

5.2.1 Exact measurement update

The exact measurement update is given by the Bayes formula

p(yi+1|Z i+1) = p(zi+1|yi+1)p(yi+1|Z i)/Li+1 (56)

Li+1 =
∫
p(zi+1|yi+1)p(yi+1|Z i)dyi+1 (57)

p(yi+1|Z i) = φ(yi+1;µ(ti+1|ti), Σ(ti+1|ti)) ∗H(yi+1) (58)
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and using Gauss-Hermite integration the likelihood is

Li+1 =
m∑

l1=1,...lp=1

wlp(zi+1|ηl)H(ηl) (59)

ηl = ηl(µ(ti+1|ti), Σ(ti+1|ti)). (60)

By the same token, the a posteriori moments are given as

µ(ti+1|ti+1) = L−1
i+1

m∑
l1=1,...lp=1

wlp(zi+1|ηl)H(ηl)ηl (61)

m
k1,...,kp

|k| (ti+1|ti+1) = L−1
i+1

m∑
l1=1,...lp=1

wlp(zi+1|ηl)H(ηl) ×

× (ηl − µ(ti+1|ti+1))
k, (62)

|k| = 2, ..., K. For the powers in the kth moment, we used the abbreviation
xk = xk1

1 ...x
kp
p . From these updated moments, a new Hermite representation

of the filter density with leading a posteriori Gaussian

p(yi+1|Z i+1) = φ(yi+1;µ(ti+1|ti+1), m2(ti+1|ti+1))

× H(yi+1; {µ(ti+1|ti+1), .., mK(ti+1|ti+1)}) (63)

can be computed and inserted into the time update equations.

5.2.2 Approximate measurement update

The Bayes formula (56)

p(yi+1|Z i+1) ∝ φ(zi+1; h(yi+1), Ri+1) ×
× φ(yi+1;µ(ti+1|ti), Σ(ti+1|ti))H(yi+1). (64)

can be approximated by using the normal correlation update as follows: The
product of the two Gaussians is written approximately as (the formula is
exact for linear measurements)

L0,i+1 ∗ φ(yi+1;µ0(ti+1|ti+1), Σ0(ti+1|ti+1)), (65)

where (setting h(yi+1) := hi+1 etc.)

µ0(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−(zi+1 − E[hi+1|Z i]) (66)

Σ0(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−Cov(hi+1, yi+1|Z i) (67)

L0,i+1 = φ(zi+1;E[hi+1|Z i],Var(hi+1|Z i) +R(ti+1)) (68)
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is the normal correlation update and the approximate likelihood of the Gaus-
sian part. Therefore the complete update is the product of the Gaussian a
posteriori density and the a priori Hermite part

p(yi+1|Z i+1) = φ(yi+1;µ0(ti+1|ti+1), Σ0(ti+1|ti+1)) ×
× H(yi+1; {µ(ti+1|ti), .., mK(ti+1|ti)})/L1,i+1 (69)

L1,i+1 =
∫
φ(yi+1;µ0(ti+1|ti+1), Σ0(ti+1|ti+1)) ×

× H(yi+1; {µ(ti+1|ti), .., mK(ti+1|ti)})dyi+1 (70)

and the complete likelihood is L = L0 ∗ L1. If the Hermite correction is
H = 1, we have L1 = 1 and L = L0 coincides with the Gaussian part. Again,
all integrals involving p = φ ∗ H can be computed using Gauss-Hermite
integration, e.g. the a posteriori moments. They are simpler to compute
than (61–62), since they involve only polynomials and not the exponential
p(z|y). In the case of linear measurements, (69) is exact.

5.2.3 Improved exact measurement update

The approximate update (66–67) can be used to improve the numerical prop-
erties of the Bayes update (56). One replaces the integration with respect
to φ(yi+1;µ(ti+1|ti), Σ(ti+1|ti)) by integration over the linear posteriori den-
sity φ(yi+1;µ0(ti+1|ti+1), Σ0(ti+1|ti+1)), analogously to importance sampling.
This is more efficient if the measurements are nonlinear and far from the
mean of the a priori density, since more Gauss-Hermite sample points are in
regions of large φ(zi+1; h(yi+1), Ri+1).

6 Examples

6.1 Bayesian estimation of volatilities

The filtering of unknown parameters is a convenient method of estimation,
since it avoids numerical optimization and yields recursive estimates. (e.g
Gelb, 1974, Ljung, 1979). For example, the volatility σ in the Ornstein-
Uhlenbeck process

dy = λydt+ σdW (t) (71)

with measurement equation

zi = yi + εi; Var(εi) = R (72)
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can be estimated by exact ML or as Bayes estimator, using an extended state
vector η = {y, σ}

dy = λydt+ σdW (t) (73)

dσ = 0 (74)

with trivial dynamics for the volatility parameter σ. Thus we obtain a non-
linear filtering problem, although the system is linear in the actual states y.
Applying the EKF, UKF or GHF to the system yields the result, that σ is
not filtered by these algorithms (fig. 1). On the contrary, the GGHF can
filter the volatility (fig. 2). Sampling the data more densely leads to a more
rapid convergence of the Bayes estimator (fig. 3). 2

The problem can be attributed to the fact that in the GHF only two moments
are involved and the measurement information is carried by the normal cor-
relation update which involves the covariance of σ with z. If these quantities
are not correlated a priori, no information on the volatility will be contained
in the measurements. More exactly, the mentioned filters always use Gaus-
sian a priori and a posteriori densities.
The following simple model can be used to explain the problem: If p(y|σ) =
φ(y;µ, σ), the posterior density p(σ|y) = p(y|σ)p(σ)/p(y) is not Gaussian as
a function of σ, but strongly deviates from normality. It is skewed and the
mode depends on y (see fig. 4). The bivariate distribution p(y|σ)p(σ) ∝
p(σ|y) (fig. 5) is not Gaussian as well and observation of y yields information
about σ. In the Gaussian approximation used by the GHF (and, implicitly,
by the EKF and UKF), p(σ|y) does not depend on y. This is the reason why
filters based on two moments cannot filter the volatility. We must consider
higher order moments. This problem occurs although the measurement is
linear and the normal correlation update (69) is exact here. However, the
a priori Hermite part H(y) carries higher order dependencies which show
up in the a posteriori moments. This is demonstrated by using the bivariate
GGHF. In the case K = 2 (GHF) we have Gaussian densities and no filtering
of σ (fig. 6), whereas for the generalized Gauss-Hermite filter the joint
density is nongaussian with increasing dispersion for higher σ-values (fig.
7). Thus, measurements of z lead to corrections in the filtered state σ̂(t) =
E[σ(t)|Z i].

2The parameter values were θ = {λ,R, σ} = {−1, 0.1, 2} and the assumed a priori
distribution was {y0, σ0} ∼ N({0, 4}, diag{1, 2}. Data were simulated in the interval [0,20]
with true initial values {0, 2}, discretization interval δt = 0.1 and sampled at irregular
times τ = {0, 4, 6, 8, 10, 11, 12, 13.5, 13.7, 15, 15.1, 17, 19, 20}.
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Figure 1: GHF: filtered states and 67% HPD confidence intervals. y (left), σ
(right).
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Figure 2: GGHF(K = 10, m = 10): filtered states and 67% HPD confidence
intervals. y (left), σ (right).
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Figure 3: GGHF(K = 6): Quasi continuous sampling at times tδt; t = 0, ...200.
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GHF, m=3, Bayes
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Figure 6: GHF: Gaussian a priori, measurement and a posteriori density for the
measurement times.
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GGHF, K=8, m=10
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Figure 7: GGHF(K = 8): Nongaussian a priori, measurement and a posteriori
density for the measurement times.
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6.2 Stochastic Volatilities

The stochastic volatility model of Scott (1987), cf. also Hull and White
(1987)

d logS(t) = [µ− σ(t)2/2]dt+ σ(t)dW (t)

dσ(t) = λ[σ(t) − σ̄]dt+ γdV (t)

zi = log S(ti)

leads to similar problems as in the last section. Due to the lemma of Itô

d logS(t) = dS/S − 1
2
S−2dS2,

the volatility process σ(t) is also part of the drift, but the filtering with EKF,
UKF, GHF etc. does not lead to satisfactory results (fig. 8). Using higher
order moment information as in the GGHF(4), GGHF(6) yields estimates of
the latent volatility trajectory (figs. 9–10) similar to Monte Carlo filtering
(functional integral filter FIF, N = 10000 replications; fig. 11; cf. Singer,
2003).

7 Conclusion

The generalized Gauss-Hermite filter (GGHF) is a natural extension of the
usual Gauss filter with leading Gaussian and higher order corrections in a
Hermite expansion of the filter density. All expectation values occuring in the
time and measurement updates can be computed by Gauss-Hermite quadra-
ture and the moment equations are closed. The Bayes update also allows
the treatment of strongly nonlinear measurements such as threshold models
(ordinal data; cf. (Singer 2006c)). In a linear Ornstein-Uhlenbeck system,
the nongaussian bivariate filter density of the extended state could be well
approximated by a higher order expansion leading to a sequential Bayesian
estimation of the volatility parameter. The same applies to the stochastic
volatility model of Scott.
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Figure 8: GGHF(K = 2) = GHF: Stochastic volatility model. Stock price (left)
and volatility (right). Similar results are obtained for the EKF, SNF and UKF.
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Figure 9: GGHF(K = 4): Stochastic volatility model. Stock price (left) and
volatility (right).
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Figure 10: GGHF(K = 6): Stochastic volatility model. Stock price (left) and
volatility (right).
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Figure 11: Monte Carlo filter (N = 10000 replications): Stochastic volatility
model. Stock price (left) and volatility (right).
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