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ORIENTED MATROIDS FROM WILD SPHERES
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In this paper we give a new proof of one direction of the Topological Representation
Theorem for Oriented Matroids. Our proof does not impose any “niceness” condition
on the hyperspheres of the representing system, and thus generalizes the result in the
strongest possible way. This solves a problem presented by A. Bjorner (see [1] Exercise
5.6.c).

Introduction

Matroids, introduced in the 30s of this century, were modelled as a combinatorial abstraction
of linear dependency in a vector space. Though they, originally, were supposed to reflect a
geometric situation their axioms are weak enough to allow structures quite different from point
configurations in Euclidean space. As a consequence they are frequently considered to be “just”
set systems.

When oriented matroids were introduced in [8], [2] the former of these articles proved a close
connection to topology: Every oriented matroid can be realized as a cell decomposition of a
sphere induced by codimension 1 spheres such that the signed covectors of the oriented matroid
correspond bijectively to the cells of the complex. Thus, oriented matroids always encode a
geometric situation.

On the other hand certain systems of hyperspheres on a sphere were shown to induce
oriented matroids (see [8] and [10]). In both cases a “niceness” condition was imposed on the
hyperspheres, namely that their embedding always can be extended to a global homeomorphism
of the sphere. As the hyperspheres are nice, they induce a regular cell decomposition of the
sphere, which is the cell complex realizing the poset of the signed covectors of an oriented
matroid.

Recently, an elementary proof of the rank 3 case of the Folkman-Lawrence Theorem has been
given by Bokowski, Mock and Streinu [3]. It is well known that any topological hypersphere
of the 2-sphere is “nice” and thus, no extra niceness condition needs to be imposed on the
hyperspheres. This is different in higher dimension where topologically “wild” hyperspheres
do exist that do not seperate the sphere into two open balls. By Jordan Brouwer Separation
Theorem arbitrarily wild spheres have the combinatorial property, though, to separate the
sphere, thus, there does not seem to be a combinatorial reason, why the topological property of
“being nice” should be necessary for a collection of hyperspheres to encode the combinatorial
structure of an oriented matroid.
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In this paper we will show that even without any niceness condition a sphere system will
always give rise to the set of signed vectors of an oriented matroid. As a corollary we derive an
even weaker definition of a sphere system. Finally, we will restate the results in a lattice theory
language to derive a characterization of oriented matroids in terms of shellability. We will
prove that oriented matroid posets are given as matroidal nested systems of spheres satisfying
a certain symmetry property.

The paper is organized as follows: In Section 1 we will introduce sphere systems and some
tools, in Section 2 we will present our main result and its proof. Section 3 proves that the
axiom system for sphere systems can be weakened without loosing structure and in Section 4
we will present a lattice theoretical version of that result. We assume some familiarity with
matroids and oriented matroids, standard references are [12] and [1]. Furthermore we will need
some basic facts in elementary topology on an undergraduate course level (see e.g. [9]).

1. Bésics and definitions

Why is it natural to consider sphere systems in the context of oriented matroids? Oriented
matroids may be viewed as a combinatorial abstraction of affine hyperplane arrangements.
The difficulty with boundary effects of parallel flats as usual can be overcome by adding the
hyperplane at infinity, thus considering the situation projectively.

One common definition of the projective space constructs. it from the standard sphere by
identifying antipodal points. The resulting space is not orientable which conflicts intuition. We
can avoid this by not doing the identification and considering the sphere as two-sided oriented
projective space with the side effect that vector spaces become 'spheres. That way hyperplane
arrangements “become hypersphere arrangements”. a

Definition 1. Let S™ := {z € R™!| | ||z|| = 1} denote the n-dimensional standard sphere.
If X C 8™ is homeomorphic to S*™', we call X a hypersphere of §™.

The most important property of a hypersphere on a sphere for our purposes is given by the
Jordan-Brouwer Separation Theorem (see e.g. [7]). ’

Theorem 1 (Jordan-Brouwer Separation Theorem). Any hypersphere H, of S™ sep-
arates S™ into ezactly two disjoint domains of which it is the common boundary.

Although combinatorially any hypersphere is, therefore, well-behaved, the components may
have non-trivial topology (such spheres are called wild).

Example 1. A first ezample of a sphere wildly embedded into R3 was given by Alezander
(see e.g. [11]). The construction is done by the following iterative process. So is a standard
sphere, this sphere grows two horns which almost link to get 51, each of these horn splits into
two fingers which almost link and the pairs of fingers mesh thus forming Sp. Iterating this
process we get uniform convergence towards a homeomorphic image Soo of the sphere. The
unbounded component of R*\ So has non-trivial topology, it is not simply connected. A sketch
of S3 1s given in Fig. 1.

- For notational reasons it will be convenient given a hypersphere of S™ to mark one of the
two components of its complement. '
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Fig. 1. The third step on the way to Alexander’s horned sphere.

Definition 2. Let H, be a hypersphere of S™. Marking one of the two components of S™\H,
to be the positive side H we get an oriented hypersphere. Let H; := S™\ (HeU HF). We will
use H? and H. synonymously.

Let H = (H.)ecr be a family of oriented hyperspheres of S™. If A C E, we call Nea Hy
the flat of A. Furthermore we denote by cl(A)={e€ E| He 2 fca Hy} the closure of A.

‘H is called a sphere system if

(S1) All flats are topological spheres.

(82) The intersection of a flat F with any oriented hypersphere He 2 F, is a hypersphere
H.NF of F, separating F into F* C HY and F- C H_ .

Ifs: E — {+,—,0} is some map then we call

ﬂ H:(e)

eck

a pseudo cell.

Remark 1. Note, that a pseudo cell is not necessarily homeomorphic to a ball. The author
does not even know whether it is always connected.

Considering only hyperspheres which are tamely embedded, i. e. the two components of their
complements are simply connected, the above azioms are known to define a regular CW-complex
the poset of which is isomorphic to the big face lattice of an oriented matroid (see [1]). Take
a hypersphere Hy of such a tame sphere system and consider a cell Z of Hy \ UeeE\f H..
This cell will be in the boundary of two mazimal cells Ty and Ty. Now observe that given
a cell decomposition of a standard S™-sphere embedded in R™ the modifications of the sphere
" to get Alexander’s horned sphere can be restricted to any maximal cell of that decomposition.
Therefore, it is clear that we can have H; grow horns such that say T is not simply connected
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anymore but neither the topology of any other cell changes nor any boundary relation changes.
Nevertheless, it is not very surprising that we get a “pseudo cell complex” with the same poset
as before. This will be made more precise later (see Definition 4).

In other words it is immediate that there are oriented matroids “from” wild spheres. What
we are going to prove in the following is that the above aziom system is strong enough to always
guarantee an oriented matroid.

Two minors of sphere systems are immediate.

Lemma 1. Let H be a sphere system on a finite set E,A C E,G =), .4 He. Then
1. Hia:={H. € H|e€ A},
2. HIA:={f(H.NG)|e€ E\ A}, where f: G — S is a suitable homeomorphism

are sphere systems.

To prove that the pseudo cells of any sphere system give rise to the signed covectors of an
oriented matroid we are going to use our result from [6]. There we showed that a map from
a lattice to a geometric lattice is the zero map of an oriented matroid if and only if it is a
symmetric antitonic folding. The result is quite technical. Therefore we cannot avoid making
the following definitions. '

Definition 3. Let P be a finite partially ordered set. We say P is connected, if for any
two elements a,b € P there is a path in the Hasse-Diagram from a to b. We say P is openly
connected, if all open intervals with at least two comparable elements are connected. If I = [z, y]
is an interval in a poset, the length of I is given by the number of elements in a mazimum chain
minus one. P has the diamond property, if each interval of length 2 consists of exactly four

elements.
A finite lattice R is a combinatorial d-manifold [4], if

e R is openly connected,
e R has length d+ 2 ,
e R has the diamond property.

If P is a poset and a < b € P, then b covers a, if for all c € P we have a < ¢ < b only if
a=corb=c. We denote this by a < b or b > a. If P und R are JD-lattices of finite length
and r(Ip) = r(Ir) + 1 then an antitonism is a map ¢ : P\ {Ip} = R satisfying

o (a<beP andb+# Ip) => p(a) > ¢(b),
® (a,6€P andaVb# Ip) = p(aVbd)=p(a)A ).

Let P be a combinatorial d-manifold and L be a geometric lattice of rank d+1. An antitonic
folding ¢ is a surjective antitonism ¢ : P\ {Ip} — L satisfying

folding property: If [z,y] C L is an interval of length 1 and b € ¢~'(y), then there are
ezactly two elements a,a’ € P in the preimage of z covering b. In this situation we call

 the triple (a,b,a’) afold.

e e ——————— |
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local flatness: If[z,y] C L is an interval of length 2 and b € 0~ (y), then the Hasse-Diagram
of the set {a € P | a > b und p(a) > z} is connected.

We say an antitonic folding (L,P,) is symmetric, if for all folds a,0,a' and any path
4= ag,a,... a0 =a in P\ {Ip} we have: V0 < p € LI <i <n:p < p(a).

Theorem 2 ([6]). Let (L, P,¢) be a symmetric antitonic folding. Then P is the big face
lattice of an oriented matroid with ¢ for its zero-map.

2. Oriented matroids from wild spheres

While Theorem 2 actually characterizes reorientation classes of oriented matroids we could
actually examine sphere systems without specified orientations. But since we provided each
sphere in our system with an orientation the Separation Theorem of Jordan Brouwer immedi-
ately yields a unique signed vector X € 2%F for each point p € S™ und thus for each pseudo
cell, rendering notation easier.

Definition 4. A signed vector U on a finite set E is a map U : E = {0,+,—}. Instead of
U(e) we will simply write Ue. If U and V are signed vectors sep (U, V) := {ec E|U.=-V. #
0} and supp (U) := U ({+, ).

On signed vectors we have the partial order P:
X<Y:&VeeE: (X, #Y. = X. =0).

In the following we will prove that a family 7 of oriented hyperspheres induces a symmetric

antitonic folding in a natural way.
We have a canonical right hand side for an antitonism:

Lemma 2. The map cl satisfies the azioms of a matroid closure.

Proof. By set inclusion we get an atomic finite lattice on the image of cl : 2F 5 9% with
the lattice operations sup{A, B} = cl(AU B) und inf{A, B} = AN B = cl(AN B) for two sets
A, B in the image of cl. The first half of Axiom (52) implies that in this lattice L the following
holds: If e € L is atomic and z € L such that e £ z, then eV z > z. Hence Theorem 3 implies
that L is geometric. The lemma follows by the 1-1-correspondence between geometric lattices
and simple matroids (see [12] 3.4.1). ]

Theorem 3 (see e.g. [12] Exercise 3.8). A4 finite, atomic lattice is geometric if and only
if
YVaeL VYO<pelL: (pLa=a<aVp).

Thus cl provides us with the possibility to construct a map onto a geometric lattice. Before
we give its definition we mention the following fact, the easy verification of which is left to the

reader.

Proposition 1. Let H be a sphere system and X one of its signed vectors. Then cl(E \
supp (X)) = E \ supp (X).
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. Definition 5. For all X € P let o(X) := E \ supp (X).
- By the above proposition ¢ is a map from some poset onto a geometric lattice. With the
1ath next lemma we prove that P is pure dimensional.
Lemma 3. Let P be the poset of a sphere system. Then:
"3 1. Each point of the pseudo cell 0p is in the boundary of every component of S™ \ Ueg He-
2. If z € S™ with signed vector X, then for all Y € P:
X <Y & z is in the boundary of Y.
uld : : .
ich 8. P satisfies the JORDAN-DEDEKIND chain condition.
:di- 4. P is pure dimensional.
ido
Proof.
of 1. We proceed by induction on m = |E|. The case m = 1 is clear by Jordan Brouwer Separation
# Theorem. Let m > 2, and p € [,z He, let © be a component of S™ \ (UeeE H.) and

f € E. In the sphere system (H.).cp\; there is a component ©' of S™ \ (USEE\J‘ He>
such that @ C ©’. If ® = @ we are done. Otherwise the intersection of the boundary
of © with H; is non-empty and thus contains a component # of Hy \ (UeeE\f He>. By

: inductive assumption p is in the boundary of 8. Since @ is contained all in the boundary
L of ©, the claim follows.

2. and 3. The backward implication of 2. is obvious. Considering the statement of 3. we first
remark that each pseudo cell different from 0p is a relatively open proper subset of the
minimal flat containing it. Hence the dimension of a pseudo cell is well defined. Instead
of 3. we may thus prove that X <Y and Y covers X then dim(X) = dim(Y) — 1.

tju}sl To verify sufficiency of 2. and to prove 3. we proceed by induction on m = lsupp (X)].
- The case m = 0 is clear from the first claim of this lemma. Thus let f € supp (X) # 0.
.es Let X', Y’ denote the pseudo cells of (He)eep\s, containing X resp. Y. Necessarily we
4 must have dim(X’) = dim(X) and dim(Y”) = dim(Y). If Y” still covers X’ we are done

. (for all z € X we have some sufficiently small neighborhood intersecting Y only in points
of Y). Therefore, assume there is some Z’ such that X’ < Z’ < Y’. Since Y covers X no
point of Z’ must be on the same side of Hy than any point of X, contradicting the fact

Iy that each point of X must be in the boundary of Z'.

Note, that in fact we proved that the rank function of P satisfies VX € P : r(X) =
dim(X) + dim(0p).

re 4. This is immediate from the above and the fact that each point which is not an interior point
1e of a full dimensional pseudo cell is in the boundary of some full dimensional pseudo cell.
=

The following is a direct consequence of the definition of a sphere system.

S ——
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Lemma 4. Let H = (H.).cg be a sphere system, X a signed vector of the corresponding
partial order P and ¢(X) = A. The partial order of H/A is isomorphic to the order ideal

generated by p~1(A).
The other minor is also compatible with the partial order.

Lemma 5. Let H = (H.).cr be a sphere system, X one of its signed vectors and A = p(X).
The partial order of H)4 is isomorphic to the filter generated by X in P.

Proof. It suffices to verify that V is a signed vector of H,4 if and only if (X, V) is a signed
vector of P (where (X, V) denotes the signed vector satisfying (X, V)isupp (x) = Xjsupp (x)
and (X,V)a=V).

The non-trivial implication is sufficiency. This is done by induction on n = |E|. The case
n =0 is clear, thus let n > 0. If ©(V|4) # 0, then all points with vectors V or X are contained
in the sphere neew(V,A) H, and the claim follows from inductive hypothesis and Lemma 4.
So we may assume ¢(Vj4) = 0 and V' # 0 and choose a signed vector W of H,4 such that
W <V and V covers W. Let f € supp (V) \ supp (W). By inductive hypothesis applied to
H/f and Lemma 4, (X, W) is a signed vector of P. By Jordan Brouwer Separation Theorem
S™ 1s separated into two components by H;. The point set corresponding to (X, W) is a full
dimensional open subset of the point set with vector W in Ha, which is in the boundary of
V' (Lemma 4). In any neighborhood of a point in (X, W) there have to be points of V with
coordinates (X, V) with respect to the original system. i

Recall, that the definition of an antitonism requires the domain of the map to be a lattice
where the top element has been removed. Therefore we have to verify that P U Ip is a lattice.
First, we show the existence of non-trivial joins, i. e. those which are not equal to Ip.

Lemma 6. Assume X,Y are pseudo cells of a sphere system H such that sep(X,Y) =
0. Then there is a pseudo cell Z in the sphere system satisfying Zisupp (x) = Xsupp (x),
Zisupp (v) = Yisupp (v) and supp(Z) = supp (X) U supp (V).

Proof. We proceed by induction on n = |E| the case n = 1 being trivial. Thus let n > 1. If
supp (X) Usupp (V) C E the claim follows immediately from inductive assumption and Lemma
4. We may assume that thereisan f € £ : X; # 0 = Y;. In the sphere system #H \ f all
points of Y belong to the same pseudo cell Y. By inductive assumtion applied to a H \ f
there is a pseudo cell Z which is as desired with respect to X \ f and Y’. The claim now again
follows from the fact that any point in the pseudo cell X has sufficiently small neighborhood

not intersecting H;. Al
Now we are prepared to prove
Lemma 7. P is a lattice and a combinatorial manifold.

Proof. According to Lemma 3 P is pure dimensional. To verify the remaining conditions
we proceed by induction on the dimension d of P.

- d =1 The only possible partial order is the diamond satisfying all conditions.

d =2 The poset of any such sphere system must be the pseudo cell complex of an even cycle.
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; d > 2 Since ()¢5 H. separates S™ only if it is a hypersphere, Lemmas 4 and 5 and inductive
g hypothesis imply that open connectivity and the diamond property are satisfied.

eal
We are left to verify that P is a lattice. Thus let U be a lower bound for X;, X, € P. Let
A =cl(sep (X1, X2) U (p(X1)Up(Xz)). The subset M C S™ with signed vector U has to
be part of F''= (1,4 H. Thus Lemma 6 guarantees the existence of a unique maximal
lower bound.
)- Since the meet of two upper bounds always is an upper bound again, we are done.
|
:d
%) Next we are going to verify the properties of ¢.
e Lemma 8. The map ¢ : P — L is an antitonic folding.
f Proof. We have already proven that ¢ is an order reversing, cover preserving surjection
' from a combinatorial manifold onto a geometric lattice. Consider a pseudo cell X being the join
1t of X; and X,. Lemma 6 guarantees that if X; VX, # Ip we have p(X; V X3) = o(X1) Ap(X2).
9 The validity of the folding property and local flatness follows from Lemmas 4 and 5 and
lrll the observations in the proof of the last lemma. |
if
h Theorem 4. The set of signed vectors given by a sphere system is the set of signed covectors

of an an oriented matroid.

Proof. The symmetry of the antitonic folding is immediate from the Jordan Brouwer Sep-
aration Theorem since the two pseudo cells of any minimal non-zero signed vector must be
separated by each sphere not containing them. |

w

3. The crossing property

Considering the results of the last section in more detail we find that axiom (52) splits into
two conditions.

(S2a) If F € H? is a flat then F'N H? is a hypersphere of F'.

(S52b) Under the assumptions of (S2a) the components of F'\ H? are on different sides of HP.

To prove that the map ¢ is an antitonic folding condition (S2b) (which Edmonds called the
crossing property) was not used at all. It was needed only to prove the symmetry.

As it is known that; given a matroid, a cocircuit signature is an oriented matroid cocircuit
signature iff the signed cocircuit elimination axiom is satisfied for modular pairs of cocircuits
one might ask whether it is possible to restrict condition (S2b) to the cases where F' is 1-
dimensional. It is immediately clear that this way we always will get a proper oriented matroid
cocircuit sign pattern on the 0-dimensional cells. But our above examinations actually yield
the following stronger result.

Theorem 5. Let H = (H.).cr be a finite family of hyperspheres of S™. Then H is a sphere
system if and only if '
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(S1) For all AC E (),c4 He is a topological sphere.

(S2'a) The map cl : 2% — 27, given by cl(A) ={e € E | H. D (4 Hy} is a matroid closure
and its rank function satisfies: r(A) = n — dim([),c4 He)-

(S2'b): If X,Y are copoints of M(E, cl) such that X AY is a coline then the two components

of .
(2

eeX

(| H.\[)H.

eeXAY eeY

lie in different components of

Proof. In Lemma 2 we proved that a sphere system satisfies (52'a). Since (52'b) is a special
case of (52b) it is clear that any sphere system satisfies the above axioms.

On the other hand the proofs in the last section showed that a finite family of hyperspheres
of S™ satisfying (S1) and (52'a) canonically induces an antitonic folding. Assume this folding
were not symmetric and there were some copoint X € L and an atom e € L such that there
exists a path in P \ 0p between the two preimages of X missing e. Clearly we must have
X # 01, and, therefore we may choose some coline G € L which is covered by X. Now X and
Y := GV e contradict (S2'b). B

4. Shellable spheres and lattices

To get a lattice-theoretical characterization of oriented matroids similar to Theorem 2 from the
above it is necessary to review some facts from combinatorial topology. The required material
is completely covered by the Appendix 4.7 from [1].

The following definition is a lattice-theoretical counterpart of shellability of regular cell

complexes.

Definition 6 (cf. [1] 4.7.17). Let P be a finite lattice with rank funktion. A linear order-
ing i,...,x; of its coatoms is a recursive coatom ordering if either r(1p) < 2, orif r(1p) > 2
and for all 1 <3<t

1. [z;], the ideal generated by z; has a recursive coatom ordering y,...,Ys and
2. there is an 1 < k < s such that [z;] N (UKj[:ci]) = | Lerlti]:

The notion of recursive coatom ordering is important for us since the big face lattice of
an oriented matroid admits a recursive coatom ordering and the following Theorem therefore
allows to construct, given an oriented matroid O, a sphere systems which is a topological model

for O.

Theorem 6 (cf. [1] 4.7.24). Let P be a finite lattice with rank function r and r(11) =

d+2. Then P is isomorphic to the face poset of some shellable regular cell decomposition A of

- ‘the d-sphere if and only if it has the diamond property and admits a recursive coatom ordering.
Furthermore A is uniquely determined by P up to cellular homeomorphism.
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Definition 7. A matroidal sphere lattice is a tripel (L, P,v), where L is a geometric lattice,
P is a poset and 1 is a surjective map . : P — L satisfying

sure
1. Vp,g € P:(p>q=1v(q) > ¥(p)),
:nts 2. Vz € L : ¢ Y[z, I]) with a top element 1¢_1([x 1) admits a recursive coatom ordering
and has the diamond property.
It is well known that given the big face lattice P of an oriented matroid, L the geometric
Jattice of the underlying matroid and ¢ the zero map then the tripel (L,P,1) satisfies the
above conditions. In the following we will prove that vice versa any matroidal sphere lattice
arises from an oriented matroid this way.
By the above theorem, given a matroidal sphere lattice (L,P,) P has a topological real-
ial ization F(A) as a regular cell decomposition of the sphere. Let isom denote the isomorphism
from A to P and ¢ = ¥ o isom . By Theorem 6 we have that for all atoms of e € L the
163 space ||¢ " ([e, 15]))|| is a hypersphere H. of ||Al|. Denote by E the set of all atoms of L and let
ng A C E. Then
;Te =
e N = ) le™ (el
+d eclE e€A
‘ = lisom () ¥~ ((e, 1))

e€A

= |lisom T'({Z € P |Ve€ A:(Z) > €e})||
= |lisom "'{Z e P [$(Z) > \/ &}

1 =l (\ )}

al ecA

Therefore, the collection of spheres (H.)ecr satisfies (S1). A similar computation verifies
that (52'a) holds as well.

Obviously (52'b) will not be valid without further assumptions. This is easily seen on a
rank 2 example. But (52'b) is easily translated into our lattice theoretical notation.

11

r-

2
Definition 8. A matroidal sphere lattice (L, P,%) is symmetric, if for all copoints X € L
and all colines G € L such that X covers G we have v~ ([G,11]) \ ¥~ ([X, 1L]) consists of two
connected components of the same cardinality.
Theorem 7. Let (L, P,¢) be a symmetric matroidal sphere lattice. Then P is the partial
order of an oriented matroid and @ is its zero map.
f
& Proof. By the above remarks we are left to verify that (52'b) holds. Assume to the contrary
1 that X,Y are copoints of M(E,cl) such that X AY is a coline and the two components of
N
H eeX
f were in the same component of
) H\[)H
e€XAY ecY
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Consider the two components A, A; of ¥~1([X A Y, 1.]) \ »~Y([X,1z]). By symmetry they
have the same cardinality. Now let B; and B, denote the two components of p ™' ([X AY,1])
¥~ ([Y;1z]). By assumption wlog. A; C B; and thus B, C A, and we get

|A1] < |Bi| = |B,| < |Ag|

contradicting symmetry.
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